Nitrite, a naturally occurring precursor of nitric oxide that acts like a ‘prodrug’ (original) (raw)
Abstract
There are enzymatic and non-enzymatic mechanisms that generate NO• from nitrite in blood, stomach, saliva, urine and skin. In blood vessels, nitrite-derived NO• can provide protection via compensatory vasodilation during hypoxia, and in various body fluids it may have antibacterial activity. In the skin, nitrite-derived NO• may contribute to skin tanning, as well as to protection against UV-induced cell damage. Current knowledge on nitrite acting like an NO• ‘prodrug’ is presented, emphasizing the role of nitrite in skin.
:
Corresponding author kroencke@uni-duesseldorf.de
References
Abu-Soud, H.M. and Hazen, S.L. (2000). Nitric oxide is a physiological substrate for mammalian peroxidases. J. Biol. Chem.275, 37524–37532.10.1074/jbc.275.48.37524Search in Google Scholar
Antunes, F., Boveris, A., and Cadenas, E. (2004). On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide. Proc. Natl. Acad. Sci. USA101, 16774–16779.10.1073/pnas.0405368101Search in Google Scholar
Bartsch, H., Ohshima, H., and Pignatelli, B. (1988). Inhibitors of endogenous nitrosation. Mechanisms and implications in human cancer prevention. Mutat. Res.202, 307–324.Search in Google Scholar
Björne, H.H., Petersson, J., Phillipson, M., Weitzberg, E., Holm, L., and Lundberg, J.O. (2004). Nitrite in saliva increases gastric mucosal blood flow and mucus thickness. J. Clin. Invest113, 106–114.10.1172/JCI19019Search in Google Scholar
Björne, H., Govoni, M., Tornberg, D.C., Lundberg, J.O., and Weitzberg, E. (2005). Intragastric nitric oxide is abolished in intubated patients and restored by nitrite. Crit. Care Med.33, 1722–1727.10.1097/01.CCM.0000171204.59502.AASearch in Google Scholar
Brennan, M.L., Wu, W., Fu, X., Shen, Z., Song, W., Frost, H., Vadseth, C., Narine, L., Lenkiewicz, E., Borchers, M.T., et al. (2002). A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J. Biol. Chem.277, 17415–17427.10.1074/jbc.M112400200Search in Google Scholar
Broillet, M.C. (1999). _S_-Nitrosylation of proteins. Cell Mol. Life Sci.55, 1036–1042.10.1007/s000180050354Search in Google Scholar
Bruch-Gerharz, D., Ruzicka, T., and Kolb-Bachofen, V. (1998). Nitric oxide and its implications in skin homeostasis and disease – a review. Arch. Dermatol. Res.290, 643–651.10.1007/s004030050367Search in Google Scholar
Bruch-Gerharz, D., Schnorr, O., Suschek, C., Beck, K.F., Pfeil-schifter, J., Ruzicka, T., and Kolb-Bachofen, V. (2003). Arginase 1 overexpression in psoriasis: limitation of inducible nitric oxide synthase activity as a molecular mechanism for keratinocyte hyperproliferation. Am. J. Pathol.162, 203–211.10.1016/S0002-9440(10)63811-4Search in Google Scholar
Bryan, N.S., Fernandez, B.O., Bauer, S.M., Garcia-Saura, M.F., Milsom, A.B., Rassaf, T., Maloney, R.E., Bharti, A., Rodriguez, J., and Feelisch, M. (2005). Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues. Nat. Chem. Biol.1, 290–297.10.1038/nchembio734Search in Google Scholar
Cammack, R., Joannou, C.L., Cui, X.Y., Torres, M.C., Maraj, S.R., and Hughes, M.N. (1999). Nitrite and nitrosyl compounds in food preservation. Biochim. Biophys. Acta1411, 475–488.10.1016/S0005-2728(99)00033-XSearch in Google Scholar
Cosby, K., Partovi, K.S., Crawford, J.H., Patel, R.P., Reiter, C.D., Martyr, S., Yang, B.K., Waclawiw, M.A., Zalos, G., Xu, X., et al. (2003). Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat. Med.9, 1498–1505.10.1038/nm954Search in Google Scholar PubMed
Crawford, J.H., Isbell, T.S., Huang, Z., Shiva, S., Chacko, B.K., Schechter, A.N., Darley-Usmar, V.M., Kerby, J.D., Lang, J.D. Jr., Kraus, D., et al. (2006). Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation. Blood107, 566–574.10.1182/blood-2005-07-2668Search in Google Scholar PubMed PubMed Central
Dahn, H., Loewe, L., Lüscher, E., and Menassé, R. (1960). Über die Oxydation von Ascorbinsäure durch salpetrige Säure. Teil I: Stöchiometrie und kinetische Messtechnik. Helv. Chim. Acta43, 287–293.Search in Google Scholar
Denicola, A., Batthyany, C., Lissi, E., Freeman, B.A., Rubbo, H., and Radi, R. (2002). Diffusion of nitric oxide into low density lipoprotein. J. Biol. Chem.277, 932–936.10.1074/jbc.M106589200Search in Google Scholar PubMed
Duncan, C., Dougall, H., Johnston, P., Green, S., Brogan, R., Leifert, C., Smith, L., Golden, M., and Benjamin, N. (1995). Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat. Med.1, 546–551.10.1038/nm0695-546Search in Google Scholar PubMed
Duranski, M.R., Greer, J.J., Dejam, A., Jaganmohan, S., Hogg, N., Langston, W., Patel, R.P., Yet, S.F., Wang, X., Kevil, C.G., et al. (2005). Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J. Clin. Invest.115, 1232–1240.10.1172/JCI22493Search in Google Scholar PubMed PubMed Central
Ehrreich, S.J. and Furchgott, R.F. (1968). Relaxation of mammalian smooth muscles by visible and ultraviolet radiation. Nature218, 682–684.10.1038/218682a0Search in Google Scholar PubMed
Eiserich, J.P., Baldus, S., Brennan, M.L., Ma, W., Zhang, C., Tousson, A., Castro, L., Lusis, A.J., Nauseef, W.M., White, C.R., and Freeman, B.A. (2002). Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science296, 2391–2394.10.1126/science.1106830Search in Google Scholar PubMed
Feelisch, M., Rassaf, T., Mnaimneh, S., Singh, N., Bryan, N.S., Jourd'Heuil, D., and Kelm, M. (2002). Concomitant _S_-, _N_-, and heme-nitros(yl)ation in biological tissues and fluids: implications for the fate of NO in vivo. FASEB J.16, 1775–1785.10.1096/fj.02-0363comSearch in Google Scholar PubMed
Ferreri, C., Kratzsch, S., Landi, L., and Brede, O. (2005). Thiyl radicals in biosystems: effects on lipid structures and metabolisms. Cell Mol. Life Sci.62, 834–847.10.1007/s00018-005-4475-ySearch in Google Scholar PubMed
Fischer, M. and Warneck, P. (1996). Photodecomposition of nitrite and undissociated nitrous acid in aqueous solution. J. Phys. Chem.100, 18749–18756.10.1021/jp961692+Search in Google Scholar
Gangolli, S.D., van den Brandt, P.A., Feron, V.J., Janzowsky, C., Koeman, J.H., Speijers, G.J., Spiegelhalder, B., Walker, R., and Wisnok, J.S. (1994). Nitrate, nitrite and _N_-nitroso compounds. Eur. J. Pharmacol.292, 1–38.10.1016/0926-6917(94)90022-1Search in Google Scholar
Gaston, B. (1999). Nitric oxide and thiol groups. Biochim. Biophys. Acta1411, 323–333.10.1016/S0005-2728(99)00023-7Search in Google Scholar
Gautier, C., van Faassen, E., Mikula, I., Martasek, P., and Slama-Schwok, A. (2006). Endothelial nitric oxide synthase reduces nitrite anions to NO under anoxia. Biochem. Biophys. Res. Commun.341, 816–821.10.1016/j.bbrc.2006.01.031Search in Google Scholar
Giles, G.I. and Jacob, C. (2002). Reactive sulfur species: an emerging concept in oxidative stress. Biol. Chem.383, 375–388.10.1515/BC.2002.042Search in Google Scholar
Gladwin, M.T., Crawford, J.H., and Patel, R.P. (2004). The biochemistry of nitric oxide, nitrite, and hemoglobin: role in blood flow regulation. Free Radic. Biol. Med.36, 707–717.10.1016/j.freeradbiomed.2003.11.032Search in Google Scholar
Gladwin, M.T., Schechter, A.N., Kim-Shapiro, D.B., Patel, R.P., Hogg, N., Shiva, S., Cannon, R.O. III, Kelm, M., Wink, D.A., Espey, M.G., et al. (2005). The emerging biology of the nitrite anion. Nat. Chem. Biol.1, 308–314.10.1038/nchembio1105-308Search in Google Scholar
Godber, B.L., Doel, J.J., Sapkota, G.P., Blake, D.R., Stevens, C.R., Eisenthal, R., and Harrison, R. (2000). Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. J. Biol. Chem.275, 7757–7763.10.1074/jbc.275.11.7757Search in Google Scholar
Hogg, N. and Kalyanaraman, B. (1999). Nitric oxide and lipid peroxidation. Biochim. Biophys. Acta1411, 378–384.10.1016/S0005-2728(99)00027-4Search in Google Scholar
Kirsch, M., Korth, H.G., Sustmann, R., and de Groot, H. (2002). The pathobiochemistry of nitrogen dioxide. Biol. Chem.383, 389–399.10.1515/BC.2002.043Search in Google Scholar PubMed
Kirsch, M., Fuchs, A., and de Groot, H. (2003). Regiospecific nitrosation of N-terminal-blocked tryptophan derivatives by N2O3 at physiological pH. J. Biol. Chem.278, 11931–11936.10.1074/jbc.M300237200Search in Google Scholar PubMed
Kleinbongard, P., Dejam, A., Lauer, T., Jax, T., Kerber, S., Gharini, P., Balzer, J., Zotz, R.B., Scharf, R.E., Willers, R., et al. (2006). Plasma nitrite concentrations reflect the degree of endothelial dysfunction in humans. Free Radic. Biol. Med.40, 295–302.10.1016/j.freeradbiomed.2005.08.025Search in Google Scholar
Kluge, I., Gutteck-Amsler, U., Zollinger, M., and Do, K.Q. (1997). _S_-Nitrosoglutathione in rat cerebellum: identification and quantification by liquid chromatography-mass spectrometry. J. Neurochem.69, 2599–2607.10.1046/j.1471-4159.1997.69062599.xSearch in Google Scholar
Kozlov, A.V., Staniek, K., and Nohl, H. (1999). Nitrite reductase activity is a novel function of mammalian mitochondria. FEBS Lett.454, 127–130.10.1016/S0014-5793(99)00788-7Search in Google Scholar
Lancaster, J.R. (1994). Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc. Natl. Acad. Sci. USA91, 8137–8141.10.1073/pnas.91.17.8137Search in Google Scholar PubMed PubMed Central
Li, H., Samouilov, A., Liu, X., and Zweier, J.L. (2001). Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrite reduction. Evaluation of its role in nitric oxide generation in anoxic tissues. J. Biol. Chem.276, 24482–24489.10.1074/jbc.M011648200Search in Google Scholar PubMed
Li, H., Samouilov, A., Liu, X., and Zweier, J.L. (2003). Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrate reduction: evaluation of its role in nitrite and nitric oxide generation in anoxic tissues. Biochemistry42, 1150–1159.10.1021/bi026385aSearch in Google Scholar PubMed
Lima, E.S., Bonini, M.G., Augusto, O., Barbeiro, H.V., Souza, H.P., and Abdalla, D.S. (2005). Nitrated lipids decompose to nitric oxide and lipid radicals and cause vasorelaxation. Free Radic. Biol. Med.39, 532–539.10.1016/j.freeradbiomed.2005.04.005Search in Google Scholar PubMed
Lundberg, J.O. and Govoni, M. (2004). Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic. Biol. Med.37, 395–400.10.1016/j.freeradbiomed.2004.04.027Search in Google Scholar PubMed
Lundberg, J.O. and Weitzberg, E. (2005). NO generation from nitrite and its role in vascular control. Arterioscler. Thromb. Vasc. Biol.25, 915–922.10.1161/01.ATV.0000161048.72004.c2Search in Google Scholar PubMed
Lundberg, J.O., Weitzberg, E., Lundberg, J.M., and Alving, K. (1994). Intragastric nitric oxide production in humans: measurements in expelled air. Gut35, 1543–1546.10.1136/gut.35.11.1543Search in Google Scholar PubMed PubMed Central
Lundberg, J.O., Carlsson, S., Engstrand, L., Morcos, E., Wiklund, N.P., and Weitzberg, E. (1997). Urinary nitrite: more than a marker of infection. Urology50, 189–191.10.1016/S0090-4295(97)00257-4Search in Google Scholar
Matsunaga, K. and Furchgott, R.F. (1989). Interactions of light and sodium nitrite in producing relaxation of rabbit aorta. J. Pharmacol. Exp. Ther.248, 687–695.Search in Google Scholar
McKnight, G.M., Duncan, C.W., Leifert, C., and Golden, M.H. (1999). Dietary nitrate in man: friend or foe? Br. J. Nutr.81, 349–358.10.1017/S000711459900063XSearch in Google Scholar
Miles, A.M., Wink, D.A., Cook, J.C., and Grisham, M.B. (1996). Determination of nitric oxide using fluorescence spectroscopy. Methods Enzymol.268, 105–120.10.1016/S0076-6879(96)68013-6Search in Google Scholar
Millar, T.M., Stevens, C.R., Benjamin, N., Eisenthal, R., Harrison, R., and Blake, D.R. (1998). Xanthine oxidoreductase catalyses the reduction of nitrates and nitrite to nitric oxide under hypoxic conditions. FEBS Lett.427, 225–228.10.1016/S0014-5793(98)00430-XSearch in Google Scholar
Mirna, A. and Hofmann, K. (1969). Über den Verbleib von Nitrit in Fleischwaren. 1. Umsetzung von Nitrit mit Sulfhydryl-Verbindungen. Fleischwirtschaft49, 1362–1366.Search in Google Scholar
NTP (2001). Toxicology and carcinogenesis studies of sodium nitrite (CAS No. 7632-00-0). Drinking water studies in F344/N rats and B6C3F1 mice. Natl. Toxicol. Program Tech. Rep. Ser. 495, 1–274.Search in Google Scholar
Ormerod, A.D., White, M.I., Shah, S.A., and Benjamin, N. (1999). Molluscum contagiosum effectively treated with a topical acidified nitrite, nitric oxide liberating cream. Br. J. Dermatol.141, 1051–1053.10.1046/j.1365-2133.1999.03204.xSearch in Google Scholar PubMed PubMed Central
Paunel, A.N., Dejam, A., Thelen, S., Kirsch, M., Horstjann, M., Gharini, P., Murtz, M., Kelm, M., de Groot, H., Kolb-Bachofen, V., and Suschek, C.V. (2005). Enzyme-independent nitric oxide formation during UVA challenge of human skin: characterization, molecular sources, and mechanisms. Free Radic. Biol. Med.38, 606–615.10.1016/j.freeradbiomed.2004.11.018Search in Google Scholar PubMed
Phillips, R., Adjei, O., Lucas, S., Benjamin, N., and Wansbrough-Jones, M. (2004). Pilot randomized double-blind trial of treatment of Mycobacterium ulcerans disease (Buruli ulcer) with topical nitrogen oxides. Antimicrob. Agents Chemother.48, 2866–2870.10.1128/AAC.48.8.2866-2870.2004Search in Google Scholar PubMed PubMed Central
Pluta, R.M., Dejam, A., Grimes, G., Gladwin, M.T., and Oldfield, E.H. (2005). Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage. J. Am. Med. Assoc.293, 1477–1484.10.1001/jama.293.12.1477Search in Google Scholar PubMed
Roméro-Graillet, C., Aberdam, E., Biagoli, N., Massabni, W., Ortonne, J.P., and Ballotti, R. (1996). Ultraviolet B radiation acts through the nitric oxide and cGMP signal transduction pathway to stimulate melanogenesis in human melanocytes. J. Biol. Chem.271, 28052–28056.10.1074/jbc.271.45.28052Search in Google Scholar PubMed
Schewe, T. and Sies, H. (2005). Myeloperoxidase-induced lipid peroxidation of LDL in the presence of nitrite. Protection by cocoa flavanols. Biofactors24, 49–58.Search in Google Scholar
Schopfer, F.J., Baker, P.R., Giles, G., Chumley, P., Batthyany, C., Crawford, J., Patel, R.P., Hogg, N., Branchaud, B.P., Lancaster, J.R. Jr., and Freeman, B.A. (2005). Fatty acid transduction of nitric oxide signaling. Nitrolinoleic acid is a hydrophobically stabilized nitric oxide donor. J. Biol. Chem.280, 19289–19297.10.1074/jbc.M414689200Search in Google Scholar PubMed
Sies, H., Sharov, V.S., Klotz, L.O., and Briviba, K. (1997). Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. J. Biol. Chem.272, 27812–27817.10.1074/jbc.272.44.27812Search in Google Scholar
Stamler, J.S., Simon, D.I., Osborne, J.A., Mullins, M.E., Jaraki, O., Michel, T., Singel, D.J., and Loscalzo, J. (1992). _S_-Nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc. Natl. Acad. Sci. USA89, 444–448.10.1073/pnas.89.1.444Search in Google Scholar
Stamler, J.S., Lamas, S., and Fang, F.C. (2001). Nitrosylation, the prototypic redox-based signaling mechanism. Cell106, 675–683.10.1016/S0092-8674(01)00495-0Search in Google Scholar
Strehlow, H. and Wagner, I. (1982). Flash photolysis in aqueous nitrite solutions. Z. Phys. Chem.132, 151–160.10.1524/zpch.1982.132.2.151Search in Google Scholar
Suschek, C.V., Krischel, V., Bruch-Gerharz, D., Berendji, D., Krutmann, J., Kröncke, K.D., and Kolb-Bachofen, V. (1999). Nitric oxide fully protects against UVA-induced apoptosis in tight correlation with Bcl-2 up-regulation. J. Biol. Chem.274, 6130–6137.10.1074/jbc.274.10.6130Search in Google Scholar PubMed
Suschek, C.V., Briviba, K., Bruch-Gerharz, D., Sies, H., Kröncke, K.D., and Kolb-Bachofen, V. (2001). Even after UVA-exposure will nitric oxide protect cells from reactive oxygen intermediate-mediated apoptosis and necrosis. Cell Death Differ.8, 515–527.10.1038/sj.cdd.4400839Search in Google Scholar PubMed
Suschek, C.V., Schroeder, P., Aust, O., Sies, H., Mahotka, C., Horstjann, M., Ganser, H., Murtz, M., Hering, P., Schnorr, O., et al. (2003). The presence of nitrite during UVA irradiation protects from apoptosis. FASEB J.17, 2342–2344.10.1096/fj.03-0359fjeSearch in Google Scholar PubMed
Treinin, A. and Hayon, E. (1970). Absorption spectra and reaction kinetics of NO2, N2O3, and N2O4 in aqueous solution. J. Am. Chem. Soc.92, 5821–5828.10.1021/ja00723a001Search in Google Scholar
Tsuchiya, K., Kanematsu, Y., Yoshizumi, M., Ohnishi, H., Kirima, K., Izawa, Y., Shikishima, M., Ishida, T., Kondo, S., Kagami, S., et al. (2005). Nitrite is an alternative source of NO in vivo. Am. J. Physiol. Heart Circ. Physiol.288, H2163–H2170.10.1152/ajpheart.00525.2004Search in Google Scholar PubMed
van der Vliet, P., Eiserich, J.P., Halliwell, B., and Cross, C.E. (1997). Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J. Biol. Chem.272, 7617–7625.10.1074/jbc.272.12.7617Search in Google Scholar PubMed
Walker, R. (1996). The metabolism of dietary nitrites and nitrates. Biochem. Soc. Trans.24, 780–785.10.1042/bst0240780Search in Google Scholar
Webb, A., Bond, R., McLean, P., Uppal, R., Benjamin, N., and Ahluwalia, A. (2004). Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc. Natl. Acad. Sci. USA101, 13683–13688.10.1073/pnas.0402927101Search in Google Scholar
Weller, R. (1997). Nitric oxide – a newly discovered chemical transmitter in human skin. Br. J. Dermatol.137, 665–672.Search in Google Scholar
Weller, R. (2003). Nitric oxide: a key mediator in cutaneous physiology. Clin. Exp. Dermatol.28, 511–514.10.1046/j.1365-2230.2003.01365.xSearch in Google Scholar
Weller, R., Pattullo, S., Smith, L., Golden, M., Ormerod, A., and Benjamin, N. (1996). Nitric oxide is generated on the skin surface by reduction of sweat nitrate. J. Invest. Dermatol.107, 327–331.10.1111/1523-1747.ep12363167Search in Google Scholar
Weller, R., Ormerod, A.D., Hobson, R.P., and Benjamin, N.J. (1998). A randomized trial of acidified nitrite cream in the treatment of tinea pedis. J. Am. Acad. Dermatol.38, 559–563.10.1016/S0190-9622(98)70117-3Search in Google Scholar
Wigilius, I.M., Axelsson, K.L., Andersson, R.G., Karlsson, J.O., and Odman, S. (1990). Effects of sodium nitrite on ultraviolet light-induced relaxation and ultraviolet light-dependent activation of guanylate cyclase in bovine mesenteric arteries. Biochem. Biophys. Res. Commun.169, 129–135.10.1016/0006-291X(90)91443-VSearch in Google Scholar
Wishnok, J.S., Tannenbaum, S.R., Tamir, S., and de Rojas-Walker, T. (1995). Endogenous formation of nitrate. In: Health aspects of nitrate and its metabolites (particularly nitrite). Proceedings of the International Workshop, Bilthoven (Netherlands), 8–10 November 1994 (Strasbourg, France: Council of Europe Press), pp. 151–179.Search in Google Scholar
Wood, P.D., Mutus, B., and Redmond, R.W. (1996). The mechanism of photochemical release of nitric oxide from _S_-nitrosoglutathione. Photochem. Photobiol. 64, 518–524.10.1111/j.1751-1097.1996.tb03099.xSearch in Google Scholar
Yamasaki, H. (2000). Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Philos. Trans. R. Soc. Lond. B Biol. Sci.355, 1477–1488.10.1098/rstb.2000.0708Search in Google Scholar PubMed PubMed Central
Zafiriou, O.C. and Bonneau, R. (1987). Wavelength-dependent quantum yield of OH radical formation from photolysis of nitrite ion in water. Photochem. Photobiol.45, 723–727.10.1111/j.1751-1097.1987.tb07873.xSearch in Google Scholar
Zhang, Y.Y., Xu, A.M., Nomen, M., Walsh, M., Keaney J.F. Jr., and Loscalzo, J. (1996). Nitrosation of tryptophan residue(s) in serum albumin and model dipeptides. Biochemical characterization and bioactivity. J. Biol. Chem.271, 14271–14279.10.1074/jbc.271.24.14271Search in Google Scholar
Zhang, Z., Naughton, D., Winyard, P.G., Benjamin, N., Blake, D.R., and Symons, M.C. (1998). Generation of nitric oxide by a nitrite reductase activity of xanthine oxidase: a potential pathway for nitric oxide formation in the absence of nitric oxide synthase activity. Biochem. Biophys. Res. Commun.249, 767–772.10.1006/bbrc.1998.9226Search in Google Scholar
Zweier, J.L., Samouilov, A., and Kuppusamy, P. (1999). Non-enzymatic nitric oxide synthesis in biological systems. Biochim. Biophys. Acta1411, 250–262.10.1016/S0005-2728(99)00018-3Search in Google Scholar
Published Online: 2006-06-01
Published in Print: 2006-05-01
©2006 by Walter de Gruyter Berlin New York