Tackling the biophysical properties of sphingolipids to decipher their biological roles (original) (raw)

Acknowledgments

Fundação para a Ciência e a Tecnologia (FCT), Portugal, provided funding (PTDC/BBB-BQB/0506/2012) and research grants to A.R.P. Varela (SFRH/BD/69982/2010) and A.C. Carreira (SFRH/BD/88194/2012).

References

Alanko, S.M.K., Halling, K.K., Maunula, S., Slotte, J.P., and Ramstedt, B. (2005). Displacement of sterols from sterol/sphingomyelin domains in fluid bilayer membranes by competing molecules. Biochim. Biophys. Acta Biomembr. 1715, 111–121.10.1016/j.bbamem.2005.08.002Search in Google Scholar PubMed

Archibald, D.D. and Yager, P. (1992). Microstructural polymorphism in bovine brain galactocerebroside and its two major subfractions. Biochemistry 31, 9045–9055.10.1021/bi00152a048Search in Google Scholar PubMed

Ariola, F.S., Li, Z., Cornejo, C., Bittman, R., and Heikal, A.A. (2009). Membrane fluidity and lipid order in ternary giant unilamellar vesicles using a new bodipy-cholesterol derivative. Biophys. J. 96, 2696–2708.10.1016/j.bpj.2008.12.3922Search in Google Scholar PubMed PubMed Central

Arnulphi, C., Levstein, P.R., Ramia, M.E., Martin, C.A., and Fidelio, G.D. (1997). Ganglioside hydration study by 2H-NMR: dependence on temperature and water/lipid ratio. J. Lipid Res. 38, 1412–1420.10.1016/S0022-2275(20)37423-XSearch in Google Scholar

Bandekar, A. and Sofou, S. (2012). Floret-shaped solid domains on giant fluid lipid vesicles induced by pH. Langmuir 28, 4113–4122.10.1021/la204765rSearch in Google Scholar PubMed

Blanchette, C.D., Lin, W.C., Ratto, T.V., and Longo, M.L. (2006). Galactosylceramide domain microstructure: impact of cholesterol and nucleation/growth conditions. Biophys. J. 90, 4466–4478.10.1529/biophysj.105.072744Search in Google Scholar PubMed PubMed Central

Bollinger, C.R., Teichgräber, V., and Gulbins, E. (2005). Ceramide-enriched membrane domains. Biochim. Biophys. Acta Mol. Cell Res. 1746, 284–294.10.1016/j.bbamcr.2005.09.001Search in Google Scholar PubMed

Bourbon, N.A., Yun, J., and Kester, M. (2000). Ceramide directly activates protein kinase C ζ to regulate a stress-activated protein kinase signaling complex. J. Biol. Chem. 275, 35617–35623.10.1074/jbc.M007346200Search in Google Scholar PubMed

Brown, R.E., Anderson, W.H., and Kulkarni, V.S. (1995). Macro-ripple phase formation in bilayers composed of galactosylceramide and phosphatidylcholine. Biophys. J. 68, 1396–1405.10.1016/S0006-3495(95)80312-7Search in Google Scholar PubMed PubMed Central

Busto, J.V., Sot, J., Requejo-Isidro, J., Goñi, F.M., and Alonso, A. (2010). Cholesterol displaces palmitoylceramide from its tight packing with palmitoylsphingomyelin in the absence of a liquid-disordered phase. Biophys. J. 99, 1119–1128.10.1016/j.bpj.2010.05.032Search in Google Scholar PubMed PubMed Central

Cambi, A. and Lidke, D.S. (2012). Nanoscale membrane organization: where biochemistry meets advanced microscopy. ACS Chem. Biol. 7, 139–149.10.1021/cb200326gSearch in Google Scholar PubMed PubMed Central

Cantu, L., Corti, M., Brocca, P., and Del Favero, E. (2009). Structural aspects of ganglioside-containing membranes. Biochim. Biophys. Acta 1788, 202–208.10.1016/j.bbamem.2008.11.003Search in Google Scholar PubMed

Carrer, D.C. and Maggio, B. (1999). Phase behavior and molecular interactions in mixtures of ceramide with dipalmitoylphosphatidylcholine. J. Lipid Res. 40, 1978–1989.10.1016/S0022-2275(20)32421-4Search in Google Scholar

Carrer, D.C., Härtel, S., Mónaco, H.L., and Maggio, B. (2003). Ceramide modulates the lipid membrane organization at molecular and supramolecular levels. Chem. Phys. Lipids 122, 147–152.10.1016/S0009-3084(02)00185-8Search in Google Scholar

Carrer, D.C., Schreier, S., Patrito, M., and Maggio, B. (2006). Effects of a short-chain ceramide on bilayer domain formation, thickness, and chain mobililty: DMPC and asymmetric ceramide mixtures. Biophys. J. 90, 2394–2403.10.1529/biophysj.105.074252Search in Google Scholar PubMed PubMed Central

Castro, B.M., de Almeida, R.F.M., Silva, L.C., Fedorov, A., and Prieto, M. (2007). Formation of ceramide/sphingomyelin gel domains in the presence of an unsaturated phospholipid: a quantitative multiprobe approach. Biophys. J. 93, 1639–1650.10.1529/biophysj.107.107714Search in Google Scholar PubMed PubMed Central

Castro, B.M., Silva, L.C., Fedorov, A., de Almeida, R.F.M., and Prieto, M. (2009). Cholesterol-rich fluid membranes solubilize ceramide domains: implications for the structure and dynamics of mammalian intracellular and plasma membranes. J. Biol. Chem. 284, 22978–22987.10.1074/jbc.M109.026567Search in Google Scholar PubMed PubMed Central

Castro, B.M., Prieto, M., and Silva, L.C. (2014). Ceramide: a simple sphingolipid with unique biophysical properties. Prog. Lipid Res. 54, 53–67.10.1016/j.plipres.2014.01.004Search in Google Scholar PubMed

Contreras, F.X., Villar, A.V., Alonso, A., Kolesnick, R.N., and Goñi, F.M. (2003). Sphingomyelinase activity causes transbilayer lipid translocation in model and cell membranes. J. Biol. Chem. 278, 37169–37174.10.1074/jbc.M303206200Search in Google Scholar PubMed

Contreras, F.X., Sot, J., Alonso, A., and Goñi, F.M. (2006). Sphingosine increases the permeability of model and cell membranes. Biophys. J. 90, 4085–4092.10.1529/biophysj.105.076471Search in Google Scholar PubMed PubMed Central

Contreras, F.X., Ernst, A.M., Haberkant, P., Björkholm, P., Lindahl, E., Gönen, B., Tischer, C., Elofsson, A., von Heijne, G., Thiele, C., et al. (2012). Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain. Nature. 481, 525–529.10.1038/nature10742Search in Google Scholar PubMed

Corti, M., Cantù, L., Brocca, P., and Del Favero, E. (2007). Self-assembly in glycolipids. Curr. Opin. Colloid Interface Sci. 12, 148–154.10.1016/j.cocis.2007.05.002Search in Google Scholar

Coskun, Ü., Grzybek, M., Drechsel, D., and Simons, K. (2011). Regulation of human EGF receptor by lipids. Proc. Natl. Acad. Sci. USA 108, 9044–9048.10.1073/pnas.1105666108Search in Google Scholar PubMed PubMed Central

de Almeida, R.F.M., Fedorov, A., and Prieto, M. (2003). Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys. J. 85, 2406–2416.10.1016/S0006-3495(03)74664-5Search in Google Scholar PubMed PubMed Central

de Almeida, R.F.M., Loura, L.M.S., Fedorov, A., and Prieto, M. (2005). Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study. J. Mol. Biol. 346, 1109–1120.10.1016/j.jmb.2004.12.026Search in Google Scholar PubMed

Dobrowsky, R.T., Kamibayashi, C., Mumby, M.C., and Hannun, Y.A. (1993). Ceramide activates heterotrimeric protein phosphatase 2A. J. Biol. Chem. 268, 15523–15530.10.1016/S0021-9258(18)82288-8Search in Google Scholar

Dumitru, C.A. and Gulbins, E. (2006). TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene 25, 5612–5625.10.1038/sj.onc.1209568Search in Google Scholar PubMed

Feng, Y., Rainteau, D., Chachaty, C., Yu, Z.W., Wolf, C., and Quinn, P.J. (2004). Characterization of a quasicrystalline phase in codispersions of phosphatidylethanolamine and glucocerebroside. Biophys. J. 86, 2208–2217.10.1016/S0006-3495(04)74279-4Search in Google Scholar PubMed PubMed Central

Fidorra, M., Duelund, L., Leidy, C., Simonsen, A.C., and Bagatolli, L.A. (2006). Absence of fluid-ordered/fluid-disordered phase coexistence in ceramide/POPC mixtures containing cholesterol. Biophys. J. 90, 4437–4451.10.1529/biophysj.105.077107Search in Google Scholar PubMed PubMed Central

Fox, T.E., Houck, K.L., O’Neill, S.M., Nagarajan, M., Stover, T.C., Pomianowski, P.T., Unal, O., Yun, J.K., Naides, S.J., and Kester, M. (2007). Ceramide recruits and activates protein kinase C zeta (PKC zeta) within structured membrane microdomains. J. Biol. Chem. 282, 12450–12457.10.1074/jbc.M700082200Search in Google Scholar PubMed

Ganesan, V. and Colombini, M. (2010). Regulation of ceramide channels by Bcl-2 family proteins. FEBS Lett. 584, 2128–2134.10.1016/j.febslet.2010.02.032Search in Google Scholar PubMed

Garmy, N., Taïeb, N., Yahi, N., and Fantini, J. (2005). Interaction of cholesterol with sphingosine: physicochemical characterization and impact on intestinal absorption. J. Lipid Res. 46, 36–45.10.1194/jlr.M400199-JLR200Search in Google Scholar PubMed

Gault, C.R., Obeid, L.M., and Hannun, Y.A. (2010). An overview of sphingolipid metabolism: from synthesis to breakdown. Adv. Exp. Med. Biol. 688, 1–23.10.1007/978-1-4419-6741-1_1Search in Google Scholar PubMed PubMed Central

Georgieva, R., Koumanov, K., Momchilova, A., Tessier, C., and Staneva, G. (2010). Effect of sphingosine on domain morphology in giant vesicles. J. Colloid Interface Sci. 350, 502–510.10.1016/j.jcis.2010.07.022Search in Google Scholar PubMed

Goñi, F.M. and Alonso, A. (2006). Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim. Biophys. Acta 1758, 1902–1921.10.1016/j.bbamem.2006.09.011Search in Google Scholar PubMed

Grassmé, H., Riethmüller, J., and Gulbins, E. (2007). Biological aspects of ceramide-enriched membrane domains. Prog. Lipid Res. 46, 161–170.10.1016/j.plipres.2007.03.002Search in Google Scholar PubMed

Grassmé, H. and Becker, K. (2013). Bacterial infections and ceramide. In: Sphingolipids in Disease. Handbook of Experimental Pharmacology, part III. Sphingolipids in Inflammation, Infection and Lung Diseases, E. Gulbins and I. Petrache, eds. (Wien: Springer-Verlag), pp. 305–321.10.1007/978-3-7091-1511-4_15Search in Google Scholar PubMed

Gulbins, E. and Kolesnick, R. (2003). Raft ceramide in molecular medicine. Oncogene 22, 7070–7077.10.1038/sj.onc.1207146Search in Google Scholar PubMed

Gupta, G. and Surolia, A. (2010). Glycosphingolipids in microdomain formation and their spatial organization. FEBS Lett. 584, 1634–1641.10.1016/j.febslet.2009.11.070Search in Google Scholar PubMed

Haberkant, P. and Holthuis, J.C.M. (2014). Fat and fabulous: bifunctional lipids in the spotlight. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1841, 1022–1030.10.1016/j.bbalip.2014.01.003Search in Google Scholar PubMed

Habrukowich, C., Han, D.K., Le, A., Rezaul, K., Pan, W., Ghosh, M., Li, Z., Dodge-Kafka, K., Jiang, X., Bittman, R., et al. (2010). Sphingosine interaction with acidic leucine-rich nuclear phosphoprotein-32A (ANP32A) regulates PP2A activity and cyclooxygenase (COX)-2 expression in human endothelial cells. J. Biol. Chem. 285, 26825–26831.10.1074/jbc.M110.147058Search in Google Scholar PubMed PubMed Central

Hannun, Y.A., Loomis, C.R., Merrill, A.H., and Bell, R.M. (1986). Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J. Biol. Chem. 261, 12604–12609.10.1016/S0021-9258(18)67133-9Search in Google Scholar

Hannun, Y.A. and Obeid, L.M. (2008). Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell. Biol. 9, 139–150.10.1038/nrm2329Search in Google Scholar PubMed

Helfrich, W. and Prost, J. (1988). Intrinsic bending force in anisotropic membranes made of chiral molecules. Phys. Rev. A 38, 3065–3068.10.1103/PhysRevA.38.3065Search in Google Scholar PubMed

Hernandez, O.M., Discher, D.J., Bishopric, N.H., and Webster, K.A. (2000). Rapid activation of neutral sphingomyelinase by hypoxia-reoxygenation of cardiac myocytes. Circ. Res. 86, 198–204.10.1161/01.RES.86.2.198Search in Google Scholar

Höglinger, D., Nadler, A., and Schultz, C. (2014). Caged lipids as tools for investigating cellular signaling. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1841, 1085–1096.10.1016/j.bbalip.2014.03.012Search in Google Scholar PubMed

Holopainen, J.M., Lehtonen, J.Y., and Kinnunen, P.K. (1997). Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes. Chem. Phys. Lipids 88, 1–13.10.1016/S0009-3084(97)00040-6Search in Google Scholar

Holopainen, J.M., Subramanian, M., and Kinnunen, P.K.J. (1998). Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry 37, 17562–17570.10.1021/bi980915eSearch in Google Scholar PubMed

Holopainen, J.M., Angelova, M.I., and Kinnunen, P.K. (2000). Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys. J. 78, 830–838.10.1016/S0006-3495(00)76640-9Search in Google Scholar PubMed PubMed Central

Holopainen, J.M., Brockman, H.L., Brown, R.E., and Kinnunen, P.K. (2001). Interfacial interactions of ceramide with dimyristoylphosphatidylcholine: impact of the N-acyl chain. Biophys. J. 80, 765–775.10.1016/S0006-3495(01)76056-0Search in Google Scholar PubMed PubMed Central

Jiménez-Rojo, N., Sot, J., Viguera, A.R., Collado, M.I., Torrecillas, A., Gómez-Fernández, J.C., Goñi, F.M., and Alonso, A. (2014). Membrane permeabilization induced by sphingosine: effect of negatively charged lipids. Biophys. J. 106, 2577–2584.10.1016/j.bpj.2014.04.038Search in Google Scholar PubMed PubMed Central

Kõiv, A., Mustonen, P., and Kinnunen, P.K. (1993). Influence of sphingosine on the thermal phase behaviour of neutral and acidic phospholipid liposomes. Chem. Phys. Lipids 66, 123–134.10.1016/0009-3084(93)90037-4Search in Google Scholar PubMed

Kraft, M.L. (2013). Plasma membrane organization and function: moving past lipid rafts. Mol. Biol. Cell 24, 2765–2768.10.1091/mbc.e13-03-0165Search in Google Scholar PubMed PubMed Central

Kuerschner, L. and Thiele, C. (2014). Multiple bonds for the lipid interest. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 1841, 1031–1037.10.1016/j.bbalip.2013.12.018Search in Google Scholar PubMed

Kulkarni, V.S., Anderson, W.H., and Brown, R.E. (1995). Bilayer nanotubes and helical ribbons formed by hydrated galactosylceramides: acyl chain and headgroup effects. Biophys. J. 69, 1976–1986.10.1016/S0006-3495(95)80068-8Search in Google Scholar PubMed PubMed Central

Kulkarni, V.S., Boggs, J.M., and Brown, R.E. (1999). Modulation of nanotube formation by structural modifications of sphingolipids. Biophys. J. 77, 319–330.10.1016/S0006-3495(99)76892-XSearch in Google Scholar PubMed PubMed Central

Lee, K.Y.C. and McConnell, H.M. (1993). Quantized symmetry of liquid monolayer domains. J. Phys. Chem. 97, 9532–9539.10.1021/j100139a044Search in Google Scholar

Li, X.M., Momsen, M.M., Brockman, H.L., and Brown, R.E. (2002). Lactosylceramide: effect of acyl chain structure on phase behavior and molecular packing. Biophys. J. 83, 1535–1546.10.1016/S0006-3495(02)73923-4Search in Google Scholar PubMed PubMed Central

López-García, F., Micol, V., Villalaín, J., and Gómez-Fernández, J.C. (1993). Interaction of sphingosine and stearylamine with phosphatidylserine as studied by DSC and NMR. Biochim. Biophys. Acta 1153, 1–8.10.1016/0005-2736(93)90269-6Search in Google Scholar PubMed

López-García, F., Villalaín, J., and Gómez-Fernández, J.C. (1994). A phase behaviour study of mixtures of sphingosine with zwitterionic phospholipids. Biochim. Biophys. Acta 1194, 281–288.10.1016/0005-2736(94)90310-7Search in Google Scholar PubMed

López-García, F., Villalaín, J., and Gómez-Fernández, J.C. (1995). Effect of sphingosine and stearylamine on the interaction of phosphatidylserine with calcium. A study using DSC, FT-IR and 45Ca2+-binding. Biochim. Biophys. Acta 1236, 279–288.10.1016/0005-2736(95)00059-CSearch in Google Scholar PubMed

López-Montero, I., Vélez, M., and Devaux, P.F. (2007). Surface tension induced by sphingomyelin to ceramide conversion in lipid membranes. Biochim. Biophys. Acta Biomembr. 1768, 553–561.10.1016/j.bbamem.2007.01.001Search in Google Scholar PubMed

Maggio, B. (2004). Favorable and unfavorable lateral interactions of ceramide, neutral glycosphingolipids and gangliosides in mixed monolayers. Chem. Phys. Lipids 132, 209–224.10.1016/j.chemphyslip.2004.07.002Search in Google Scholar PubMed

Mannock, D.A., Harper, P.E., Gruner, S.M., and McElhaney, R.N. (2001). The physical properties of glycosyl diacylglycerols. Calorimetric, X-ray diffraction and Fourier transform spectroscopic studies of a homologous series of 1,2-di-O-acyl-3-O-(β-D-galactopyranosyl)-_sn_-glycerols. Chem. Phys. Lipids 111, 139–161.10.1016/S0009-3084(01)00153-0Search in Google Scholar

Massey, J.B. (2001). Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers. Biochim. Biophys. Acta Biomembr. 1510, 167–184.10.1016/S0005-2736(00)00344-8Search in Google Scholar

Maunula, S., Björkqvist, Y.J.E., Slotte, J.P., and Ramstedt, B. (2007). Differences in the domain forming properties of N-palmitoylated neutral glycosphingolipids in bilayer membranes. Biochim. Biophys. Acta Biomembr. 1768, 336–345.10.1016/j.bbamem.2006.09.003Search in Google Scholar PubMed

Megha and London, E. (2004). Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J. Biol. Chem. 279, 9997–10004.10.1074/jbc.M309992200Search in Google Scholar PubMed

Merrill, A.H., Nimkar, S., Menaldino, D., Hannun, Y.A., Loomis, C., Bell, R.M., Tyagi, S.R., Lambeth, J.D., Stevens, V.L., and Hunter, R. (1989). Structural requirements for long-chain (sphingoid) base inhibition of protein kinase C in vitro and for the cellular effects of these compounds. Biochemistry 28, 3138–3145.10.1021/bi00434a004Search in Google Scholar PubMed

Montes, L.R., Ruiz-Argüello, M.B., Goñi, F.M., and Alonso, A. (2002). Membrane restructuring via ceramide results in enhanced solute efflux. J. Biol. Chem. 277, 11788–11794.10.1074/jbc.M111568200Search in Google Scholar PubMed

Morrow, M.R., Singh, D., Lu, D., and Grant, C.W. (1992). Glycosphingolipid phase behaviour in unsaturated phosphatidylcholine bilayers: a 2H-NMR study. Biochim. Biophys. Acta 1106, 85–93.10.1016/0005-2736(92)90225-BSearch in Google Scholar

Mustonen, P., Lehtonen, J., Kõiv, A., and Kinnunen, P.K. (1993). Effects of sphingosine on peripheral membrane interactions: comparison of adriamycin, cytochrome c, and phospholipase A2. Biochemistry 32, 5373–5380.10.1021/bi00071a012Search in Google Scholar PubMed

Oglecka, K., Sanborn, J., Parikh, A.N., and Kraut, R.S. (2012). Osmotic gradients induce bio-reminiscent morphological transformations in giant unilamellar vesicles. Front. Physiol. 3, 1–11.10.3389/fphys.2012.00120Search in Google Scholar PubMed PubMed Central

Othman, A., Rütti, M.F., Ernst, D., Saely, C.H., Rein, P., Drexel, H., Porretta-Serapiglia, C., Lauria, G., Bianchi, R., von Eckardstein, A., et al. (2012). Plasma deoxysphingolipids: a novel class of biomarkers for the metabolic syndrome? Diabetologia 55, 421–431.10.1007/s00125-011-2384-1Search in Google Scholar PubMed

Owen, D.M., Magenau, A., Williamson, D., and Gaus, K. (2012). The lipid raft hypothesis revisited – new insights on raft composition and function from super-resolution fluorescence microscopy. Bioessays 34, 739–747.10.1002/bies.201200044Search in Google Scholar PubMed

Penno, A., Reilly, M.M., Houlden, H., Laurá, M., Rentsch, K., Niederkofler, V., Stoeckli, E.T., Nicholson, G., Eichler, F., Brown, R.H., et al. (2010). Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J. Biol. Chem. 285, 11178–11187.10.1074/jbc.M109.092973Search in Google Scholar PubMed PubMed Central

Perkovic, S. and McConnell, H.M. (1997). Cloverleaf monolayer domains. J. Phys. Chem. B 101, 381–388.10.1021/jp9618183Search in Google Scholar

Pinto, S.N., Silva, L.C., de Almeida, R.F.M., and Prieto, M. (2008). Membrane domain formation, interdigitation, and morphological alterations induced by the very long chain asymmetric C24:1 ceramide. Biophys. J. 95, 2867–2879.10.1529/biophysj.108.129858Search in Google Scholar PubMed PubMed Central

Pinto, S.N., Silva, L.C., Futerman, A.H., and Prieto, M. (2011). Effect of ceramide structure on membrane biophysical properties: the role of acyl chain length and unsaturation. Biochim. Biophys. Acta Biomembr. 1808, 2753–2760.10.1016/j.bbamem.2011.07.023Search in Google Scholar PubMed

Pinto, S.N., Fernandes, F., Fedorov, A., Futerman, A.H., Silva, L.C., and Prieto, M. (2013). A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains. Biochim. Biophys. Acta Biomembr. 1828, 2099–2110.10.1016/j.bbamem.2013.05.011Search in Google Scholar PubMed

Pinto, S.N., Laviad, E.L., Stiban, J., Kelly, S.L., Merrill, A.H., Prieto, M., Futerman, A.H., and Silva, L.C. (2014). Changes in membrane biophysical properties induced by sphingomyelinase depend on the sphingolipid N-acyl chain. J. Lipid Res. 55, 53–61.10.1194/jlr.M042002Search in Google Scholar PubMed PubMed Central

Prenner, E., Honsek, G., Hönig, D., Möbius, D., and Lohner, K. (2007). Imaging of the domain organization in sphingomyelin and phosphatidylcholine monolayers. Chem. Phys. Lipids 145, 106–118.10.1016/j.chemphyslip.2006.11.002Search in Google Scholar PubMed

Rock, P., Allietta, M., Young, W.W., Thompson, T.E., and Tillack, T.W. (1991). Ganglioside GM1 and asialo-GM1 at low concentration are preferentially incorporated into the gel phase in two-component, two-phase phosphatidylcholine bilayers. Biochemistry 30, 19–25.10.1021/bi00215a003Search in Google Scholar PubMed

Ruiz-Argüello, M.B., Basáñez, G., Goñi, F.M., and Alonso, A. (1996). Different effects of enzyme-generated ceramides and diacylglycerols in phospholipid membrane fusion and leakage. J. Biol. Chem. 271, 26616–26621.10.1074/jbc.271.43.26616Search in Google Scholar PubMed

Ruiz-Argüello, M.B., Goñi, F.M., and Alonso, A. (1998). Vesicle membrane fusion induced by the concerted activities of sphingomyelinase and phospholipase C. J. Biol. Chem. 273, 22977–22982.10.1074/jbc.273.36.22977Search in Google Scholar PubMed

Ruvolo, P.P., Clark, W., Mumby, M., Gao, F., and Stratford May, W. (2002). A functional role for the B56 α-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function. J. Biol. Chem. 277, 22847–22852.10.1074/jbc.M201830200Search in Google Scholar PubMed

Ruvolo, P.P. (2003). Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol. Res. 47, 383–392.10.1016/S1043-6618(03)00050-1Search in Google Scholar

Sáez-Cirión, A., Basánez, G., Fidelio, G., Goñi, F.M., Maggio, B., and Alonso, A. (2000). Sphingolipids (galactosylceramide and sulfatide) in lamellar – hexagonal phospholipid phase transitions and in membrane fusion. Langmuir 16, 8958–8963.10.1021/la000532tSearch in Google Scholar

Säily, V.M.J., Alakoskela, J.M., Ryhänen, S.J., Karttunen, M., and Kinnunen, P.K.J. (2003). Characterization of sphingosine-phosphatidylcholine monolayers: effects of DNA. Langmuir 19, 8956–8963.10.1021/la034307ySearch in Google Scholar

Saito, Y., Waki, M., Hameed, S., Hayasaka, T., and Setou, M. (2012). Challenge of mass spectrometry toward the elucidation of life phenomena development of imaging mass spectrometry. Biol. Pharm. Bull. 35, 1417–1424.10.1248/bpb.b212007Search in Google Scholar PubMed

Sarasij, R.C., Mayor, S., and Rao, M. (2007). Chirality-induced budding: a raft-mediated mechanism for endocytosis and morphology of caveolae? Biophys. J. 92, 3140–3158.10.1529/biophysj.106.085662Search in Google Scholar PubMed PubMed Central

Sasaki, H., Arai, H., Cocco, M.J., and White, S.H. (2009). pH dependence of sphingosine aggregation. Biophys. J. 96, 2727–2733.10.1016/j.bpj.2008.12.3926Search in Google Scholar PubMed PubMed Central

Satoh, T., Kubo, A., Shimma, S., and Toyoda, M. (2012). Mass spectrometry imaging and structural analysis of lipids directly on tissue specimens by using a spiral orbit type tandem time-of-flight mass spectrometer, spiralTOF-TOF. Mass Spectrom. (Tokyo, Japan) 1, A0013.10.5702/massspectrometry.A0013Search in Google Scholar PubMed PubMed Central

Saxena, K., Duclos, R.I., Zimmermann, P., Schmidt, R.R., and Shipley, G.G. (1999). Structure and properties of totally synthetic galacto- and gluco-cerebrosides. J. Lipid Res. 40, 839–849.10.1016/S0022-2275(20)32119-2Search in Google Scholar

Saxena, K., Duclos, R.I., Sripada, P.K., and Shipley, G.G. (2000). Unusual hydration properties of C16:0 sulfatide bilayer membranes. Biophys. J. 79, 385–393.10.1016/S0006-3495(00)76300-4Search in Google Scholar PubMed PubMed Central

Schneider-Schaulies, J. and Schneider-Schaulies, S. (2013). Viral infections and sphingolipids. In: Sphingolipids in Disease, Handbook of Experimental Pharmacology, Part III. Sphingolipids in Inflammation, Infection and Lung Diseases, E. Gulbins and I. Petrache, eds. (Wien: Springer-Verlag), pp. 321–341.10.1007/978-3-7091-1511-4_16Search in Google Scholar PubMed

Shah, J., Atienza, J.M., Duclos, R.I., Rawlings, A.V., Dong, Z., and Shipley, G.G. (1995). Structural and thermotropic properties of synthetic C16:0 (palmitoyl) ceramide: effect of hydration. J. Lipid Res. 36, 1936–1944.10.1016/S0022-2275(20)41112-5Search in Google Scholar

Silva, L.C., de Almeida, R.F.M., Fedorov, A., Matos, A.P.A., and Prieto, M. (2006). Ceramide-platform formation and -induced biophysical changes in a fluid phospholipid membrane. Mol. Membr. Biol. 23, 137–150.10.1080/09687860500439474Search in Google Scholar PubMed

Silva, L.C., de Almeida, R.F.M., Castro, B.M., Fedorov, A., and Prieto, M. (2007). Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid. Biophys. J. 92, 502–516.10.1529/biophysj.106.091876Search in Google Scholar PubMed PubMed Central

Silva, L.C., Futerman, A.H., and Prieto, M. (2009). Lipid raft composition modulates sphingomyelinase activity and ceramide-induced membrane physical alterations. Biophys. J. 96, 3210–3222.10.1016/j.bpj.2008.12.3923Search in Google Scholar PubMed PubMed Central

Silvius, J.R. (2003). Role of cholesterol in lipid raft formation: lessons from lipid model systems. Biochim. Biophys. Acta Biomembr. 1610, 174–183.10.1016/S0005-2736(03)00016-6Search in Google Scholar

Simons, K. and Sampaio, J.L. (2011). Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 3, a004697.10.1101/cshperspect.a004697Search in Google Scholar PubMed PubMed Central

Sohal, P.S. and Cornell, R.B. (1990). Sphingosine inhibits the activity of rat liver CTP: phosphocholine cytidylyltransferase. J. Biol. Chem. 265, 11746–11750.10.1016/S0021-9258(19)38461-3Search in Google Scholar

Sot, J., Aranda, F.J., Collado, M.I., Goñi, F.M., and Alonso, A. (2005a). Different effects of long- and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: a calorimetric, NMR, and X-ray diffraction study. Biophys. J. 88, 3368–3380.10.1529/biophysj.104.057851Search in Google Scholar PubMed PubMed Central

Sot, J., Goñi, F.M., and Alonso, A. (2005b). Molecular associations and surface-active properties of short- and long-N-acyl chain ceramides. Biochim. Biophys. Acta Biomembr. 1711, 12–19.10.1016/j.bbamem.2005.02.014Search in Google Scholar PubMed

Sot, J., Ibarguren, M., Busto, J.V., Montes, L.R., Goñi, F.M., and Alonso, A. (2008). Cholesterol displacement by ceramide in sphingomyelin-containing liquid-ordered domains, and generation of gel regions in giant lipidic vesicles. FEBS Lett. 582, 3230–3236.10.1016/j.febslet.2008.08.016Search in Google Scholar PubMed

Tani, M. and Hannun, Y.A. (2007). Analysis of membrane topology of neutral sphingomyelinase 2. FEBS Lett. 581, 1323–1328.10.1016/j.febslet.2007.02.046Search in Google Scholar PubMed PubMed Central

Thompson, T.E. and Tillack, T.W. (1985). Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu. Rev. Biophys. Biophys. Chem. 14, 361–386.10.1146/annurev.bb.14.060185.002045Search in Google Scholar PubMed

Tidhar, R. and Futerman, A. (2013). The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochim. Biophys. Acta Mol. Cell Res. 1833, 2511–2518.10.1016/j.bbamcr.2013.04.010Search in Google Scholar PubMed

Todeschini, A. and Hakomori, S.I. (2008). Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim. Biophys. Acta Gen. Subj. 1780, 421–433.10.1016/j.bbagen.2007.10.008Search in Google Scholar PubMed PubMed Central

Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brügger, B., and Simons, M. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247.10.1126/science.1153124Search in Google Scholar PubMed

van Blitterswijk, W.J., van der Luit, A.H., Veldman, R.J., Verheij, M., and Borst, J. (2003). Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem. J. 369, 199–211.10.1042/bj20021528Search in Google Scholar

Varela, A.R.P., Gonçalves Da Silva, A.M.P.S., Fedorov, A., Futerman, A.H., Prieto, M., and Silva, L.C. (2013). Effect of glucosylceramide on the biophysical properties of fluid membranes. Biochim. Biophys. Acta Biomembr. 1828, 1122–1130.10.1016/j.bbamem.2012.11.018Search in Google Scholar PubMed

Varela, A.R.P., Gonçalves Da Silva, A.M.P.S., Fedorov, A., Futerman, A.H., Prieto, M., and Silva, L.C. (2014). Influence of intracellular membrane pH on sphingolipid organization and membrane biophysical properties. Langmuir 30, 4094–4104.10.1021/la5003397Search in Google Scholar PubMed

Veiga, M.P., Arrondo, J.L., Goñi, F.M., and Alonso, A. (1999). Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases. Biophys. J. 76, 342–350.10.1016/S0006-3495(99)77201-2Search in Google Scholar PubMed PubMed Central

Wang, T.Y. and Silvius, J.R. (2003). Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers. Biophys. J. 84, 367–378.10.1016/S0006-3495(03)74857-7Search in Google Scholar PubMed PubMed Central

Watanabe, C., Puff, N., Staneva, G., Seigneuret, M., and Angelova, M. (2014). Antagonism and synergy of single chain sphingolipids sphingosine and sphingosine-1-phosphate toward lipid bilayer properties. Consequences for their role as cell fate regulators. Langmuir 30, 13956–13963.10.1021/la5039816Search in Google Scholar PubMed

Westerlund, B. and Slotte, J.P. (2009). How the molecular features of glycosphingolipids affect domain formation in fluid membranes. Biochim. Biophys. Acta Biomembr. 1788, 194–201.10.1016/j.bbamem.2008.11.010Search in Google Scholar PubMed

Wu, X. and Li, Q. (1999). Hydration and stability of sulfatide-containing phosphatidylethanolamine small unilamellar vesicles. Biochim. Biophys. Acta 1416, 285–294.10.1016/S0005-2736(98)00229-6Search in Google Scholar

Yuan, C., Furlong, J., Burgos, P., and Johnston, L.J. (2002). The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. Biophys. J. 82, 2526–2535.10.1016/S0006-3495(02)75596-3Search in Google Scholar PubMed PubMed Central

Zaraiskaya, T. and Jeffrey, K.R. (2005). Molecular dynamics simulations and 2H NMR study of the GalCer/DPPG lipid bilayer. Biophys. J. 88, 4017–4031.10.1529/biophysj.104.054601Search in Google Scholar PubMed PubMed Central

Zhang, Y., Li, X., Becker, K.A., and Gulbins, E. (2009). Ceramide-enriched membrane domains-structure and function. Biochim. Biophys. Acta Biomembr. 1788, 178–183.10.1016/j.bbamem.2008.07.030Search in Google Scholar PubMed

Zheng, W., Kollmeyer, J., Symolon, H., Momin, A., Munter, E., Wang, E., Kelly, S., Allegood, J.C., Liu, Y., Peng, Q., et al. (2006). Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim. Biophys. Acta Biomembr. 1758, 1864–1884.10.1016/j.bbamem.2006.08.009Search in Google Scholar PubMed

Zupancic, Z., Carreira, A.C., de Almeida, R.F.M., and Silva, L.C. (2014). Biophysical implications of sphingosine accumulation in membrane properties at neutral and acidic pH. J. Phys. Chem. B 118, 4858–4866.10.1021/jp501167fSearch in Google Scholar PubMed