Cerebrospinal fluid protein biomarkers for Alzheimer’s disease (original) (raw)
References
Blennow K, Skoog I. Genetic testing for Alzheimer’s disease: how close is reality?Curr Opin Psychiatry 12: 487–493, 1999. Google Scholar
Tomlinson BE, Blessed G, Roth M. Observations on the brains of demented old people.J Neurol Sci 11: 205–242, 1970. PubMedCAS Google Scholar
Davies L, Wolska B, Hilbich C, Multhaup G, Martins R, Simms G et al. A4 amyloid protein deposition and the diagnosis of Alzheimer’s disease: prevalence in aged brains determined by immunocytochemistry compared with conventional neuropathologic techniques.Neurology 38: 1688–1693, 1988. PubMedCAS Google Scholar
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of department of health and human services task force on Alzheimer’s disease.Neurology 34: 939–944, 1984. PubMedCAS Google Scholar
Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome.Arch Neurol 56: 303–308, 1999. PubMedCAS Google Scholar
DeCarli C. Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment.Lancet Neurol 2: 15–21, 2003. PubMed Google Scholar
Blennow K, Wallin A. Clinical heterogeneity of probable Alzheimer’s disease.J Geriatr Psychiatry Neurol 5: 106–113, 1992. PubMedCAS Google Scholar
Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain.EMBO J 8: 393–399, 1989. PubMedCAS Google Scholar
Buée L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders.Brain Res Brain Res Rev 33: 95–130, 2000. PubMed Google Scholar
Iqbal K, Alonso Adel C, El-Akkad E, Gong CX, Haque N et al. Pharmacological targets to inhibit Alzheimer neurofibrillary degeneration.J Neural Transm Suppl 62: 309–319, 2002. PubMedCAS Google Scholar
Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology.Proc Natl Acad Sci USA 83: 4913–4917, 1986. PubMedCAS Google Scholar
Iqbal K, Alonso AD, Gondal JA, Gong CX, Haque N, Khatoon S et al. Mechanism of neurofibrillary degeneration and pharmacologic therapeutic approach.J Neural Transm Suppl 59: 213–222, 2000. PubMedCAS Google Scholar
Vandermeeren M, Mercken M, Vanmechelen E, Six J, van de Voorde A, Martin JJ et al. Detection of t proteins in normal and Alzheimer’s disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay.J Neurochem 61: 1828–1834, 1993. PubMedCAS Google Scholar
Blennow K, Wallin A, Ågren H, Spenger C, Siegfried J, Vanmechelen E. Tau protein in cerebrospinal fluid: a biochemical diagnostic marker for axonal degeneration in Alzheimer’s disease?Mol Chem Neuropathol 26: 231–245, 1995. PubMedCAS Google Scholar
Vigo-Pelfrey C, Seubert P, Barbour R, Blomquist C, Lee M, Lee D et al. Elevation of microtubule-associated protein tau in the cerebrospinal fluid of patients with Alzheimer’s disease.Neurology 45: 788–793, 1995. PubMedCAS Google Scholar
Mori H, Hosoda K, Matsubara E, Nakamoto T, Furiya Y, Endoh R et al. Tau in cerebrospinal fluids: establishment of the sandwich ELISA with antibody specific to the repeat sequence in tau.NeurosciLett 186: 181–183, 1995. CAS Google Scholar
Blennow K, Vanmechelen E, Hampel H. CSF total tau, Ab42 and phosphorylated tau protein as biomarkers for Alzheimer’s disease.Mol Neurobiol 24: 87–97, 2001. PubMedCAS Google Scholar
Hesse C, Rosengren L, Vanmechelen E, Vanderstichele H, Jensen C, Davidsson P et al. Cerebrospinal fluid markers for Alzheimer’s disease evaluated after acute ischemic stroke.J Alzheimers Dis 2: 199–206, 2000. PubMedCAS Google Scholar
Otto M, Wiltfang J, Tumani H, Zerr I, Lantsch M, Kornhuber J et al. Elevated levels of tau-protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease.Neurosci Lett 225: 210–212, 1997. PubMedCAS Google Scholar
Andreasen N, Minthon L, Clarberg A, Davidsson P, Gottfries J, Vanmechelen E et al. Sensitivity, specificity and stability of CSF t-tau in AD in a community-based patient sample.Neurology 53: 1488–1494, 1999. PubMedCAS Google Scholar
Vanmechelen E, Vanderstichele H, Davidsson P, Van Kerschaver E, Van Der Perre B, Sjogren M et al. Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization.Neurosci Lett 285: 49–52, 2000. PubMedCAS Google Scholar
Ishiguro K, Ohno H, Arai H, Yamaguchi H, Urakami K, Park JM et al. Phosphorylated tau in human cerebrospinal fluid is a diagnostic marker for Alzheimer’s disease.Neurosci Lett 270: 91–94, 1999. PubMedCAS Google Scholar
Kohnken R, Buerger K, Zinkowski R, Miller C, Kerkman D, DeBernardis J et al. Detection of tau phosphorylated at threonine 231 in cerebrospinal fluid of Alzheimer’s disease patients.Neurosci Lett 287: 187–190, 2000. PubMedCAS Google Scholar
Hu YY, He SS, Wang X, Duan QH, Grundke-Iqbal I, Iqbal K et al. Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of Alzheimer’s disease patients: an ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay.Am J Pathol 160: 1269–1278, 2002. PubMedCAS Google Scholar
Hesse C, Rosengren L, Andreasen N, Davidsson P, Vanderstichele H, Vanmechelen E et al. Transient increase in CSF total tau but not phospho-tau after acute stroke.Neurosci Lett 297: 187–190, 2001. PubMedCAS Google Scholar
Riemenschneider M, Wagenpfeil S, Vanderstichele H, Otto M, Wiltfang J, Kretzschmar H et al. Phospho-tau/total tau ratio in cerebrospinal fluid discriminates Creutzfeldt-Jakob disease from other dementias.Mol Psychiatry 8: 343–347, 2003. PubMedCAS Google Scholar
Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer’s disease and Down syndrome.Proc Natl Acad Sci USA 82: 4245–4249, 1985. PubMedCAS Google Scholar
Haas C, Selkoe DJ. Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide.Cell 75: 1039–1042, 1993. Google Scholar
Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH et al. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor.Nature 325: 733–736, 1987. PubMedCAS Google Scholar
Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D et al. Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids.Nature 359: 325–327, 1992. PubMedCAS Google Scholar
Van Nostrand WE, Wagner SL, Shankle WR, Farrow JS, Dick M, Rozemuller JM et al. Decreased levels of soluble amyloid β-protein precursor in cerebrospinal fluid of live Alzheimer disease patients.Proc Natl Acad Sci USA 89: 2551–2555, 1992. PubMed Google Scholar
Farlow M, Ghetti B, Benson MD, Farrow JS, van Nostrand WE, Wagner SL. Low cerebrospinal-fluid concentrations of soluble amyloid β-protein precursor in hereditary Alzheimer’s disease.Lancet 340: 453–454, 1992. PubMedCAS Google Scholar
Tabaton M, Nunzi MG, Xue R, Usiak M, Autilio-Gambetti L, Gambetti P. Soluble amyloid β-protein is a marker of Alzheimer amyloid in brain but not in cerebrospinal fluid.Biochem Biophys Res Commun 200: 1598–1603, 1994. PubMedCAS Google Scholar
van Gool WA, Kuiper MA, Walstra GJ, Wolters EC, Bolhuis PA. Concentrations of amyloid β-protein in cerebrospinal fluid of patients with Alzheimer’s disease.Ann Neurol 37: 277–279, 1995. PubMed Google Scholar
Motter R, Vigo-Pelfrey C, Kholodenko D, Barbour R, Johnson-Wood K, Galasko D et al. Reduction of β-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease.Ann Neurol 38: 643–648, 1995. PubMedCAS Google Scholar
Southwick PC, Yamagata SK, Echols CL, Higson GJ, Neynaber SA, Parson RE et al. Assessment of amyloid β-protein in cerebrospinal fluid as an aid in the diagnosis of Alzheimer’s disease.J Neurochem 66: 259–265, 1996. PubMedCAS Google Scholar
Jarrett JT, Berger EP, Lansbury PT. The carboxy terminus of the β-amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease.Biochemistry 32: 4693–4697, 1993. PubMedCAS Google Scholar
Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: evidence that an initially deposited species is Aβ42(43).Neuron 13: 45–53, 1994. PubMedCAS Google Scholar
Tamaoka A, Kondo T, Odaka A, Sahara N, Sawamura N, Ozawa K et al. Biochemical evidence for the long-tail form (Aβ 1–42/43) of amyloid β protein as a seed molecule cerebral deposits of Alzheimer’s disease.Biochem Biophys Res Commun 205: 834–842, 1994. PubMedCAS Google Scholar
Miller DL, Papayannopoulos IA, Styles J, Bobin SA, Lin YY, Biemann K, Iqbal K. Peptide composition of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer’s disease.Arch Biochem Biophys 301: 41–52, 1993. PubMedCAS Google Scholar
Vanderstichele H, Blennow K, D’Heuvaert ND, Buyse MA, Wallin A, Andreasen N et al. Development of a specific diagnostic test for measurement of β-amyloid(1–42) in CSF. In:Progress in Alzheimer’s and Parkinson’s diseases (Fisher A, Hanin I, Yoshida M, eds), pp 773–778. New York: Plenum, 1998. Google Scholar
Mehta PD, Pirttila T, Mehta SP, Sersen EA, Aisen PS, Wisniewski HM. Plasma and cerebrospinal fluid levels of amyloid β proteins 1–40 and 1–42 in Alzheimer disease.Arch Neurol 57: 100–105, 2000. PubMedCAS Google Scholar
Sunderland T, Linker G, Mirza N, Putnam KT, Friedman DL, Kimmel LH et al. Decreased β-amyloidl-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease.JAMA 289: 2094–2103, 2003. PubMed Google Scholar
Ida N, Hartmann T, Pantel J, Schroder J, Zerfass R, Forstl H et al. Analysis of heterogeneous A4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay.J Biol Chem 271: 22908–22914, 1996. PubMedCAS Google Scholar
Schroder J, Pantel J, Ida N, Essig M, Hartmann T, Knopp MV et al. Cerebral changes and cerebrospinal fluid β-amyloid in Alzheimer’s disease: a study with quantitative magnetic resonance imaging.Mol Psychiatry 2: 505–507, 1997. PubMedCAS Google Scholar
Jensen M, Schroder J, Blomberg M, Engvall B, Pantel J, Ida N et al. Cerebrospinal fluid A β42 is increased early in sporadic Alzheimer’s disease and declines with disease progression.Ann Neurol 45: 504–511, 1999. PubMedCAS Google Scholar
Wiltfang J, Esselmann H, Bibl M, Smirnov A, Otto M, Paul S et al. Highly conserved and disease-specific patterns of carboxyterminally truncated Aβ peptides 1–37/38/39 in addition to 1–40/42 in Alzheimer’s disease and in patients with chronic neuroinflammation.J Neurochem 81: 481–496, 2002. PubMedCAS Google Scholar
Lewczuk P, Esselmann H, Meyer M, Wollscheid V, Neumann M, Otto M et al. The amyloid-β (Aβ) peptide pattern in cerebrospinal fluid in Alzheimer’s disease: evidence of a novel carboxyterminally elongated Aβ peptide.Rapid Commun Mass Spectrom 17: 1291–1296, 2003. PubMedCAS Google Scholar
Andreasen N, Hesse C, Davidsson P, Wallin A, Minthon L, Winblad B et al. Cerebrospinal fluid β-amyloid(1–42) in Alzheimer’s disease: differences between early- and late-onset Alzheimer disease and stability during the course of disease.Arch Neurol 56: 673–680, 1999. PubMedCAS Google Scholar
Sjögren M, Minthon L, Davidsson P, Granérus AK, Clarberg A, Vanderstichele H et al. CSF levels of tau, β-amyloidl-42 and GAP-43 in frontotemporal dementia, other types of dementia and normal aging.J Neural Transm 107: 563–579, 2000. PubMed Google Scholar
Otto M, Esselmann H, Schulz-Shaeffer W, Neumann M, Schroter A, Ratzka P et al. Decreased β-amyloidl-42 in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease.Neurology 54: 1099–1102, 2000. PubMedCAS Google Scholar
Sjögren M, Davidsson P, Wallin A, Granerus AK, Grundström E, Askmark H et al. Decreased CSF β-amyloid42 in Alzheimer’s disease and amyotrophic lateral sclerosis may reflect mismetabolism of β-amyloid induced by separate mechanisms.Dement Geriatr Cogn Disord 13: 112–118, 2002. PubMed Google Scholar
Holmberg B, Johnels B, Blennow K, Rosengren L. Cerebrospinal fluid Aβ42 is reduced in multiple system atrophy but normal in Parkinson’s disease and progressive supranuclear palsy.Mov Disord 18: 186–190, 2003. PubMed Google Scholar
Strozyk D, Blennow K, White LR, Launer LJ. CSF Aβ42 levels correlate with amyloid-neuropathology in a population-based autopsy study.Neurology 60: 652–656, 2003. PubMedCAS Google Scholar
Tamaoka A, Sawamura N, Fukushima T, Shoji S, Matsubara E, Shoji M et al. Amyloid β protein 42(43) in cerebrospinal fluid of patients with Alzheimer’s disease.J Neurol Sci 148: 41–45, 1997. PubMedCAS Google Scholar
Kanai M, Matsubara E, Isoe K, Urakami K, Nakashima K, Arai H et al. Longitudinal study of cerebrospinal fluid levels of tau, A β1–40, and A β 1–42(43) in Alzheimer’s disease: a study in Japan.Ann Neurol 44: 17–26, 1998. PubMedCAS Google Scholar
Shoji M, Matsubara E, Kanai M, Watanabe M, Nakamura T, Tomidokoro Y et al. Combination assay of CSF tau, Aβ 1–40 and Aβ 1–42(43) as a biochemical marker of Alzheimer’s disease.J Neurol Sci 158: 134–140, 1998. PubMedCAS Google Scholar
Fukuyama R, Mizuno T, Mori S, Nakajima K, Fushiki S, Yanagisawa K. Age-dependent change in the levels of Aβ40 and Aβ42 in cerebrospinal fluid from control subjects, and a decrease in the ratio of Aβ42 to Aβ40 level in cerebrospinal fluid from Alzheimer’s disease patients.Eur Neurol 43: 155–160, 2000. PubMedCAS Google Scholar
Vigo-Pelfrey C, Lee D, Keim P, Lieberburg I, Schenk DB. Characterization of β-amyloid peptide from human cerebrospinal fluid.J Neurochem 61: 1965–1968, 1993. PubMedCAS Google Scholar
Sergeant N, Bombois S, Ghestem A, Drobecq H, Kostanjevecki V, Missiaen C et al. Truncated β-amyloid peptide species in pre-clinical Alzheimer’s disease as new targets for the vaccination approach.J Neurochem 85: 1581–1591, 2003. PubMedCAS Google Scholar
Blennow K, Hampel H. CSF markers for incipient Alzheimer’s disease.Lancet Neurol 2: 605–613, 2003. PubMedCAS Google Scholar
Arai H, Terajima M, Miura M, Higuchi S, Muramatsu T, Machida N et al. Tau in cerebrospinal fluid: a potential diagnostic marker in Alzheimer’s disease.Ann Neurol 38: 649–652, 1995. PubMedCAS Google Scholar
Andreasen N, Vanmechelen E, Van de Voorde A, Davidsson P, Hesse C, Tarvonen S, Räihä I, Sourander L, Winblad B, Blennow K. Cerebrospinal fluid tau protein as a biochemical marker for Alzheimer’s disease: a community-based follow-up study.J Neurol Neurosurg Psychiatry 64: 298–305, 1998. PubMedCAS Google Scholar
Arai H, Satoh-Nakagawa T, Higuchi M, Morikawa Y, Miura M, Kawakami H, Seki H, Takase S, Sasaki H. No increase in cerebrospinal fluid tau protein levels in patients with vascular dementia.Neurosci Lett 256: 174–176, 1998. PubMedCAS Google Scholar
Kurz A, Riemenschneider M, Buch K, Willoch F, Bartenstein P, Muller U et al. Tau protein in cerebrospinal fluid is significantly increased at the earliest stage of Alzheimer disease.Alzheimer Dis Assoc Disord 12: 372–377, 1998. PubMedCAS Google Scholar
Nishimura T, Takeda M, Nakamura Y, Yosbida Y, Arai H, Sasaki H et al. Basic and clinical studies on the measurement of tau protein in cerebrospinal fluid as a biological marker for Alzheimer’s disease and related disorders: multicenter study in Japan.Methods Find Exp Clin Pharmacol 20: 227–235, 1998. PubMedCAS Google Scholar
Hulstaert F, Blennow K, Ivanoiu A, Schoonderwaldt HC, Riemenschneider M, De Deyn PP et al. Improved discrimination of AD patients using β-amyloid(l–42) and tau levels in CSF.Neurology 52: 1555–1562, 1999. PubMedCAS Google Scholar
Maruyama M, Arai H, Sugita M, Tanji H, Higuchi M, Okamura N et al. Cerebrospinal fluid amyloid β(l–42) levels in the mild cognitive impairment stage of Alzheimer’s disease.Exp Neurol 172: 433–436, 2001. PubMedCAS Google Scholar
Sjögren M, Davidsson P, Gottfries J, Vanderstichele H, Edman A, Vanmechelen E et al. The cerebrospinal fluid levels of tau, growth-associated protein-43 and soluble amyloid precursor protein correlate in Alzheimer’s disease, reflecting a common patho-physiological process.Dement Geriatr Cogn Disord 12: 257–264, 2001. PubMed Google Scholar
Sjögren M, Davidsson P, Tullberg M, Minthon L, Wallin A, Wikkelsö C et al. Both total and hyperphosphorylated tau are increased in Alzheimer’s disease.J Neurol Neurosurg Psychiatry 70: 624–630, 2001. PubMed Google Scholar
Buerger K, Zinkowski R, Teipel SJ, Tapiola T, Arai H, Blennow K et al. Differential diagnosis of Alzheimer’s disease with cerebrospinal fluid levels of tau protein phosphorylated at threonine 231.Arch Neurol 59: 1267–1272, 2002. PubMed Google Scholar
Riemenschneider M, Wagenpfeil S, Diehl J, Lautenschlager N, Theml T, Heldmann B et al. Tau and Aβ42 protein in CSF of patients with frontotemporal degeneration.Neurology 58: 1622–1628, 2002. PubMedCAS Google Scholar
Shoji M, Matsubara E, Murakami T, Manabe Y, Abe K, Kanai M et al. Cerebrospinal fluid tau in dementia disorders: a large scale multicenter study by a Japanese study group.Neurobiol Aging 23: 363–370, 2002. PubMed Google Scholar
Kapaki E, Paraskevas GP, Zalonis I, Zournas C. CSF tau protein and β-amyloid (1–42) in Alzheimer’s disease diagnosis: discrimination from normal ageing and other dementias in the Greek population.Eur J Neurol 10: 119–128, 2003. PubMedCAS Google Scholar
Wallin A, Sjögren M, Davidsson P, Blennow K. Decreased cerebrospinal fluid acetylcholinesterase in patients with subcortical ischemic vascular dementia.Dement Geriatr Cogn Disord 16: 200–207, 2003. PubMedCAS Google Scholar
Kapaki E, Kilidireas K, Paraskevas GP, Michalopoulou M, Patsouris E. Highly increased CSF tau protein and decreased β-amyloid (1–42) in sporadic CJD: a discrimination from Alzheimer’s disease?J Neurol Neurosurg Psychiatry 71: 401–403, 2001. PubMedCAS Google Scholar
Otto M, Wiltfang J, Cepek L, Neumann M, Mollenhauer B, Steinacker P et al. Tau protein and 14-3-3 protein in the differential diagnosis of Creutzfeldt-Jakob disease.Neurology 58: 192–197, 2002. PubMedCAS Google Scholar
Van Everbroeck B, Green AJ, Vanmechelen E, Vanderstichele H, Pals P, Sanchez-Valle R et al. Phosphorylated tau in cerebrospinal fluid as a marker for Creutzfeldt-Jakob disease.J Neurol Neurosurg Psychiatry 73: 79–81, 2002. PubMed Google Scholar
Green AJ. Use of 14-3-3 in the diagnosis of Creutzfeldt-Jakob disease.Biochem Soc Trans 30: 382–386, 2002. PubMedCAS Google Scholar
Jellinger KA. Diagnostic accuracy of Alzheimer’s disease: a clinicopathological study.Acta Neuropathol 91: 219–220, 1996. PubMedCAS Google Scholar
Kosunen O, Soininen H, Paljärvi L, Heinonen O, Talasniemi S, Riekkinen PJ Sr. Diagnostic accuracy of Alzheimer’s disease: a neuropathological study.Acta Neuropathol 91: 185–193, 1996. PubMedCAS Google Scholar
Takeda M, Tanaka T, Arai H, Sasaki H, Shoji M, Okamoto K. Basic and clinical studies on the measurement of β-amyloid(l–42) in cerebrospinal fluid as a diagnostic marker for Alzheimer’s disease and related disorders: multicenter study in Japan.Psychogeriatrics 1: 56–63, 2001. Google Scholar
Arai H, Morikawa Y, Higuchi M, Matsui T, Clark CM, Miura M et al. Cerebrospinal fluid tau levels in neurodegenerative diseases with distinct tau-related pathology.Biochem Biophys Res Commun 236: 262–264, 1997. PubMedCAS Google Scholar
Mecocci P, Cherubini A, Bregnocchi M, Chionne F, Cecchetti R, Lowenthal DT et al. Tau protein in cerebrospinal fluid: a new diagnostic and prognostic marker in Alzheimer disease?Alzheimer Dis Assoc Disord 12: 211–214, 1998. PubMedCAS Google Scholar
Molina L, Touchon J, Herpe M, Lefranc D, Duplan L, Cristol JP et al. Tau and apo E in CSF: potential aid for discriminating Alzheimer’s disease from other dementias.NeuroReport 10: 3491–3495, 1999. PubMedCAS Google Scholar
Itoh N, Arai H, Urakami K, Ishiguro K, Ohno H, Hampel H et al. Large-scale, multicenter study of cerebrospinal fluid tau protein phosphorylated at serine 199 for the antemortem diagnosis of Alzheimer’s disease.Ann Neurol 50: 150–156, 2001. PubMedCAS Google Scholar
Gomez-Tortosa E, Gonzalo I, Fanjul S, Sainz MJ, Cantarero S, Cemillan C et al. Cerebrospinal fluid markers in dementia with Lewy bodies compared with Alzheimer disease.Arch Neurol 60: 1218–1222, 2003. PubMed Google Scholar
Kahle PJ, Jakowec M, Teipel SJ, Hampel H, Petzinger GM, Di Monte DA et al. Combined assessment of tau and neuronal thread protein in Alzheimer’s disease CSF.Neurology 54: 1498–1504, 2000. PubMedCAS Google Scholar
Kanemaru K, Kameda N, Yamanouchi H. Decreased CSF amyloid β42 and normal tau levels in dementia with Lewy bodies.Neurology 54: 1875–1876, 2000. PubMedCAS Google Scholar
Sáez-Valero J, Fodero LR, Sjögren M, Andreasen N, Amici S, Gallai V et al. Glycosylation of acetylcholinesterase and butyryl-cholinesterase changes as a function of the duration of Alzheimer’s disease.J Neurosci Res 72: 520–526, 2003. PubMed Google Scholar
Morikawa Y, Arai H, Matsushita S, Kato M, Higuchi S, Miura M et al. Cerebrospinal fluid tau protein levels in demented and nondemented alcoholics.Alcohol Clin Exp Res 23: 575–577, 1999. PubMedCAS Google Scholar
Parnetti L, Lanari A, Amici S, Gallai V, Vanmechelen E, Hulstaert F. CSF phosphorylated tau is a possible marker for discriminating Alzheimer’s disease from dementia with Lewy bodies. Phospho-tau International Study Group.Neurol Sci 22: 77–78, 2001. PubMedCAS Google Scholar
Hampel H, Buerger K, Zinkowski R, Teipel SJ, Andreasen N, Sjögren M et al. Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer’s disease — a comparative study.Arch Gen Psychiatry 61: 95–102, 2004. PubMedCAS Google Scholar
Maddalena A, Papassotiropoulos A, Muller-Tillmanns B, Jung HH, Hegi T, Nitsch RM et al. Biochemical diagnosis of Alzheimer disease by measuring the cerebrospinal fluid ratio of phosphorylated tau protein to β-amyloid peptide42.Arch Neurol 60: 1202–1206, 2003. PubMed Google Scholar
Rosso SM, van Herpen E, Pijnenburg YA, Schoonenboom NS, Scheltens P, Heutink P et al. Total tau and phosphorylated tau 181 levels in the cerebrospinal fluid of patients with frontotemporal dementia due to P301L and G272V tau mutations.Arch Neurol 60: 1209–1213, 2003. PubMed Google Scholar
Buerger K, Zinkowski R, Teipel SJ, Arai H, DeBernardis J, Kerkman D et al. Differentiation of geriatric major depression from Alzheimer’s disease with CSF tau protein phosphorylated at threonine 231.Am J Psychiatry 160: 376–379, 2003. PubMed Google Scholar
Rosler N, Wichart I, Jellinger KA. Clinical significance of neurobiochemical profiles in the lumbar cerebrospinal fluid of Alzheimer’s disease patients.J Neural Transm 108: 231–246, 2001. PubMedCAS Google Scholar
Briani C, Ruggero S, Naccarato M, Cagnin A, Ricchieri GL, Pasqui L et al. Combined analysis of CSF βA42 peptide and tau protein and serum antibodies to glycosaminoglycans in Alzheimer’s disease: preliminary data.J Neural Transm 109: 393–398, 2002. PubMedCAS Google Scholar
Mulder C, Schoonenboom SN, Wahlund LO, Scheltens P, van Kamp GJ, Veerhuis R, Hack CE, Blomberg M, Schutgens RB, Eikelenboom P. CSF markers related to pathogenetic mechanisms in Alzheimer’s disease.J Neural Transm 109: 1491–1498, 2002. PubMedCAS Google Scholar
Andreasen N, Minthon L, Vanmechelen E, Vanderstichele H, Davidsson P, Winblad B et al. CSF t-tau and CSF-Aβ42 as predictors of development of Alzheimer’s disease in patients with mild cognitive impairment.Neurosci Lett 273: 5–8, 1999. PubMedCAS Google Scholar
Andreasen N, Minthon L, Davidsson P, Vanmechelen E, Vanderstichele H, Winblad B. Evaluation of CSF-tau and CSF-Aβ42 as diagnostic markers for Alzheimer’s disease in clinical practice.Arch Neurol 58: 373–379, 2001. PubMedCAS Google Scholar
Andreasen N, Gottfries J, Vanmechelen E, Vanderstichele H, Davidsson P, Winblad B, Rosengren L, Blennow K. Evaluation of CSF biomarkers for axonal and neuronal degeneration, gliosis, and β-amyloid metabolism in Alzheimer’s disease.J Neurol Neurosurg Psychiatry 71: 557–558, 2001. PubMedCAS Google Scholar
Riemenschneider M, Buch K, Schmolke M, Kurz A, Guder WG. Cerebrospinal protein tau is elevated in early Alzheimer’s disease.Neurosci Lett 212: 209–211, 1996. PubMedCAS Google Scholar
Galasko D, Clark C, Chang L, Miller B, Green RC, Motter R et al. Assessment of CSF levels of tau protein in mildly demented patients with Alzheimer’s disease.Neurology 48: 632–635, 1997. PubMedCAS Google Scholar
Galasko D, Chang L, Motter R, Clark CM, Kaye J, Knopman D et al. High cerebrospinal fluid tau and low amyloid β42 levels in the clinical diagnosis of Alzheimer disease and relation to apolipoprotein E genotype.Arch Neurol 55: 937–945, 1998. PubMedCAS Google Scholar
Arai H, Ishiguro K, Ohno H, Moriyama M, Itoh N, Okamura N et al. CSF phosphorylated tau protein and mild cognitive impairment: a prospective study.Exp Neurol 166: 201–203, 2000. PubMedCAS Google Scholar
Gottfries J, Blennow K, Lehmann MW, Regland B, Gottfries CG. One-carbon metabolism and other biochemical correlate of cognitive impairment as visualized by principal component analysis.J Geriatr Psychiatry Neurol 14: 109–114, 2001. PubMedCAS Google Scholar
Lautenschlager NT, Riemenschneider M, Drzezga A. Primary degenerative mild cognitive impairment: study population, clinical, brain imaging and biochemical findings.Dement Geriatr Cogn Disord 12: 379–386, 2001. PubMedCAS Google Scholar
Riemenschneider M, Lautenschlager N, Wagenpfeil S, Diehl J, Drzezga A, Kurz A. Cerebrospinal fluid tau and β-amyloid 42 proteins identify Alzheimer disease in subjects with mild cognitive impairment.Arch Neurol 59: 1729–1734, 2002. PubMedCAS Google Scholar
Andreasen N, Vanmechelen E, Vanderstichele H, Davidsson P, Blennow K. Cerebrospinal fluid levels of total-tau, phospho-tau and Aβ42 predicts development of Alzheimer’s disease in patients with mild cognitive impairment.Acta Neurol Scand 107(Suppl 179): 47–51, 2003 Google Scholar
Arai H, Nakagawa T, Kosaka Y, Higuchi M, Matsui T, Okamura N et al. Elevated cerebrospinal fluid tau protein level as a predictor of dementia in memory-impaired patients.Alzheimer’s Res 3: 211–213, 1997. Google Scholar
Buerger K, Teipel SJ, Zinkowski R, Blennow K, Arai H, Engel R, Hofmann-Kiefer K et al. CSF tau protein phosphorylated at threonine 231 correlates with cognitive decline in MCI subjects.Neurology 59: 627–629, 2002. PubMedCAS Google Scholar
Skoog I, Davidsson P, Aevarsson O, Vanderstichele H, Vanmechelen E, Blennow K. Cerebrospinal fluid β-amyloid 42 is reduced before the onset of sporadic dementia: a population-based study in 85-year-olds.Dement Geriatr Cogn Disord 15: 169–176, 2003. PubMedCAS Google Scholar
Finley D, Varshavsky A. The ubiquitin system: functions and mechanisms.Trends Biochem Sci 10: 343–347, 1985. CAS Google Scholar
Herschko A, Ciechanover A. The ubiquitin pathway for the degradation of intracellular proteins.Prog Nucleic Acid Res Mol Biol 33: 19–56, 1986. Google Scholar
Monia BP, Ecker DJ, Crooke ST. New perspectives on the structure and function of ubiquitin.Biotechnology 8: 209–215, 1990. CAS Google Scholar
Perry G, Friedman R, Shaw G, Chau V. Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains.Proc Natl Acad Sci USA 84: 3033–3036, 1987. PubMedCAS Google Scholar
Mori H, Kondo J, Ihara Y. Ubiquitin is a component of paired helical filaments in Alzheimer’s disease.Science 235: 1641–1644, 1987. PubMedCAS Google Scholar
Wang GP, Khatoon S, Iqbal K, Grundke-Iqbal I. Brain ubiquitin is markedly elevated in Alzheimer disease.Brain Res 566: 146–151, 1991. PubMedCAS Google Scholar
Wang GP, Grundke-Iqbal I, Kascsak RJ, Iqbal K, Wisniewski HM. Alzheimer neurofibrillary tangles: monoclonal antibodies to inherent antigen(s).Acta Neuropathol (Berl) 62: 268–275, 1984. CAS Google Scholar
Mehta PD, Thal L, Wisniewski HM, Grundke-Iqbal I, Iqbal K. Paired helical filament antigen in CSF.Lancet 2: 35, 1985. PubMedCAS Google Scholar
Perry G, Mulvihill P, Fried VA, Smith HT, Grundke-Iqbal I, Iqbal K. Immunochemical properties of ubiquitin conjugates in the paired helical filaments of Alzheimer disease.J Neurochem 52: 1523–1528, 1989. PubMedCAS Google Scholar
Wang GP, Iqbal K, Bucht G, Winblad B, Wisniewski HM, Grundke-Iqbal I. Alzheimer’s disease: paired helical filament immunoreactivity in cerebrospinal fluid.Acta Neuropathol (Berl) 82: 6–12, 1991. CAS Google Scholar
Kudo T, Iqbal K, Ravid R, Swaab DF, Grundke-Iqbal I. Alzheimer disease: correlation of cerebrospinal fluid and brain ubiquitin levels.Brain Res 639: 1–7, 1994. PubMedCAS Google Scholar
Blennow K, Davidsson P, Wallin A, Gottfries CG, Svennerholm L. Ubiquitin in cerebrospinal fluid in Alzheimer’s disease and vascular dementia.Int Psychogeriatr 6: 13–22, 1994. PubMedCAS Google Scholar
Friede RL, Samorajski T. Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice.Anat Rec 167: 379–387, 1970. PubMedCAS Google Scholar
Sjogren M, Blomberg M, Jonsson M, Wahlund LO, Edman A, Lind K, Rosengren L, Blennow K, Wallin A. Neurofilament protein in cerebrospinal fluid: a marker of white matter changes.J Neurosci Res 66: 510–516, 2001. PubMedCAS Google Scholar
Rosengren LE, Karlsson JE, Sjogren M, Blennow K, Wallin A. Neurofilament protein levels in CSF are increased in dementia.Neurology 52: 1090–1093, 1999. PubMedCAS Google Scholar
Sjogren M, Rosengren L, Minthon L, Davidsson P, Blennow K, Wallin A. Cytoskeleton proteins in CSF distinguish frontotemporal dementia from AD.Neurology 54: 1960–1964, 2000. PubMedCAS Google Scholar
Hu YY, He SS, Wang XC, Duan QH, Khatoon S, Iqbal K, Grundke-Iqbal I, Wang JZ. Elevated levels of phosphorylated neurofilament proteins in cerebrospinal fluid of Alzheimer disease patients.Neurosci Lett 320: 156–160, 2002. PubMedCAS Google Scholar
Nixon RA. The regulation of neurofilament protein dynamics by phosphorylation: clues to neurofibrillary pathobiology.Brain Pathol 3: 29–38, 1993. PubMedCAS Google Scholar
Benowitz LI, Shashoua VE, Yoon M. Specific changes in rapidly transported proteins during regeneration of goldfish optic nerve.J Neurosci 1: 300–307, 1981. PubMedCAS Google Scholar
Benowitz LI, Perrone-Bizzozero NI, Finklestein SP, Bird ED. Localization of the growth-associated phosphoprotein GAP-43 (B-50, F1) in the human cerebral cortex.J Neurosci 9: 990–995, 1989. PubMedCAS Google Scholar
Mercken M, Lübke U, Vandermeeren M, Gheuens J, Oestreicher AB. Immunocytochemical detection of the growth-associated protein B-50 by newly characterized monoclonal antibodies in human brain and muscle.J Neurobiol 23: 309–321, 1992. PubMedCAS Google Scholar
Masliah E, Mallory M, Hansen L, Alford M, Albright T, De-Teresa R, Terry R, Baudier J, Saitoh T. Patterns of aberrant sprouting in Alzheimer’s disease.Neuron 6: 729–739, 1991. PubMedCAS Google Scholar
Bogdanovic N, Davidsson P, Volkmann I, Winblad B, Blennow K. Growth-associated protein GAP-43 in the frontal cortex and in the hippocampus in Alzheimer’s disease: an immunohistochemical and quantitative study.J Neural Transm 107: 463–478, 2000. PubMedCAS Google Scholar
Davidsson P, Blennow K. Neurochemical dissection of synaptic pathology in Alzheimer’s disease.Int Psychogeriatr 10: 11–23, 1998. PubMedCAS Google Scholar
Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW Jr et al. Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease.Neurology 56: 127–129, 2001. PubMedCAS Google Scholar
Davidsson P, Punchades M, Blennow K. Identification of synaptic vesicle, pre- and postsynaptic proteins in human cerebrospinal fluid using liquid phase isoelectric focusing.Electrophoresis 20: 431–437, 1999. PubMedCAS Google Scholar
Vanmechelen E, Blennow K, Davidsson P, Cras P, Van de Voorde A. Combination of tau/phospho-tau with other biochemical markers for Alzheimer CSF diagnosis and tau in CSF as marker for neurodegeneration. In: Alzheimer’s disease: biology, diagnosis and therapeutics (Iqbal K, Winblad B, Nishimura T, Takeda M, Wisniewski HM, eds), pp 197–203. Chichester, UK: Wiley Ltd., 1997. Google Scholar
Ozturk M, de la Monte S, Gross J, Wands JR. Elevated levels of an exocrine pancreatic secretory protein in Alzheimer disease brain.Proc Natl Acad Sci USA 86: 419–423, 1989. PubMedCAS Google Scholar
De la Monte SM, Wands JR. Neuronal thread protein overexpression in brains with Alzheimer’s disease lesions.J Neurol Sci 113: 152–164, 1992. PubMed Google Scholar
De la Monte SM, Ozturk M, Wands JR. Enhanced expression of an exocrine pancreatic protein in Alzheimer’s disease and the developing human brain.J Clin Invest 86: 10004–10013, 1990. Google Scholar
De la Monte SM, Volicer L, Hauser SL, Wands JR. Increased levels of neuronal thread protein in cerebrospinal fluid of patients with Alzheimer’s disease.Ann Neurol 32: 733–742, 1992. PubMed Google Scholar
Gross J, Carlson RI, Brauer AW, Margolies MN, Warshaw AL, Wands JR. Isolation, characterization, and distribution of an unusual pancreatic human secretory protein.J Clin Invest 76: 2115–2126, 1985. PubMedCAS Google Scholar
Blennow K, Wallin A, Chong JK. Cerebrospinal fluid “neuronal thread protein” comes from serum by passage over the blood-brain barrier.Neurodegeneration 4: 187–193, 1995. PubMedCAS Google Scholar
Monte SM, Ghanbari K, Frey WH, Beheshti I, Averback P, Hauser SL et al. Characterization of the AD7C-NTP cDNA expression in Alzheimer’s disease and measurement of a 41-kD protein in cerebrospinal fluid.J Clin Invest 100: 3093–3104, 1997. PubMedCAS Google Scholar
Ghanbari K, Ghanbari H. A sandwich enzyme immunoassay for measuring AD7C-NTP as an Alzheimer’s disease marker: AD7C test.J Clin Lab Anal 12: 223–226, 1998. PubMedCAS Google Scholar