Mechanisms of neural cell death: Implications for development of neuroprotective treatment strategies (original) (raw)
Eldadah BA, Faden AI. Caspase pathways, neuronal apoptosis, and CNS injury.J Neurotrauma 17: 811–829, 2000. PubMedCAS Google Scholar
Snider BJ, Gottron FJ, Choi DW. Apoptosis and necrosis in cerebrovascular disease.Ann NY Acad Sci 893: 243–253, 1999. PubMedCAS Google Scholar
Graeber MB, Moran LB. Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts.Brain Pathol 12: 385–390, 2002. PubMed Google Scholar
Honig LS, Rosenberg RN. Apoptosis and neurologic disease.Am J Med 108: 317–330, 2000. PubMedCAS Google Scholar
Panter SS, Faden AI. Biochemical changes and secondary injury from stroke and trauma. In: Principles and practice of restorative neurology, Chap 5 (Young RR, Delwade PJ, eds), pp 32–52. New York: Butterworth’s, 1992. Google Scholar
McIntosh TK. Neurochemical sequelae of traumatic brain injury: therapeutic implications.Cerebrovasc Brain Metab Rev 6: 109–162, 1994. PubMedCAS Google Scholar
Pohl D, Bittigau P, Ishimaru MJ, Stadthaus D, Hubner C, Olney JW et al. N-methyl-d-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain.Proc Natl Acad Sci USA 96: 2508–2513, 1999. PubMedCAS Google Scholar
Faden AI. Pharmacological treatment of central nervous system trauma.Pharmacol Toxicol 78: 12–17, 1996. PubMedCAS Google Scholar
Pitts LH, Ross A, Chase GA, Faden AI. Treatment with thyrotropin-releasing hormone (TRH) in patients with traumatic spinal cord injuries.J Neurotrauma 12: 235–243, 1995. PubMedCAS Google Scholar
Bracken MB, Holford TR. Effects of timing of methylprednisolone or naloxone administration on recovery of segmental and long-tract neurological function in NASCIS 2.J Neurosurg 79: 500–507, 1993. PubMedCAS Google Scholar
Faden AI. Neuroprotection and traumatic brain injury: theoretical option or realistic proposition.Curr Opin Neurol 15: 707–712, 2002. PubMed Google Scholar
Lees KR. Neuroprotection is unlikely to be effective in humans using current trial designs: an opposing view.Stroke 33: 308–309, 2002. PubMed Google Scholar
Schweichel JU, Merker HJ. The morphology of various types of cell death in prenatal tissues.Teratology 7: 253–266, 1973. Google Scholar
Kerr JF, Wyllie AH, Currie AR. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics.Br J Cancer 26: 239–257, 1972. PubMedCAS Google Scholar
Kitanaka C, Kuchino Y. Caspase-independent programmed cell death with necrotic morphology.Cell Death Differ 6: 508–515, 1999. PubMedCAS Google Scholar
Clarke PG. Developmental cell death: morphological diversity and multiple mechanisms.Anat Embryol (Berl) 181: 195–213, 1990. CAS Google Scholar
Van Cruchten S, Van Den Broeck W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis.Anat Histol Embryol 31: 214–223, 2002. PubMed Google Scholar
Bursch W. The autophagosomal-lysosomal compartment in programmed cell death.Cell Death Differ 8: 569–581, 2001. PubMedCAS Google Scholar
Levin S, Bucci TJ, Cohen SM, Fix AS, Hardisty JF, LeGrand EK et al. The nomenclature of cell death: recommendations of an_ad hoc_ Committee of the Society of Toxicologic Pathologists.Toxicol Pathol 27: 484–490, 1999. PubMedCAS Google Scholar
Formigli L, Papucci L, Tani A, Schiavone N, Tempestini A, Orlandini GE et al. Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis.J Cell Physiol 182: 41–49, 2000. PubMedCAS Google Scholar
Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures.Proc Natl Acad Sci USA 92: 7162–7166, 1995. PubMedCAS Google Scholar
Eguchi Y, Shimizu S, Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis.Cancer Res 57: 1835–1840, 1997. PubMedCAS Google Scholar
Turmaine M, Raza A, Mahal A, Mangiarini L, Bates GP, Davies SW. Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington’s disease.Proc Natl Acad Sci USA 97: 8093–8097, 2000. PubMedCAS Google Scholar
Fiskum G. Mitochondrial participation in ischemic and traumatic neural cell death.J Neurotrauma 17: 843–855, 2000. PubMedCAS Google Scholar
Dal Canto MC, Gurney ME. Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis.Am J Pathol 145: 1271–1279, 1994. Google Scholar
Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death.Proc Natl Acad Sci USA 97: 14376–14381, 2000. PubMedCAS Google Scholar
Castro-Obregon S, Del Rio G, Chen SF, Swanson RA, Frankowski H, Rao RV et al. A ligand-receptor pair that triggers a non-apoptotic form of programmed cell death.Cell Death Differ 9: 807–817, 2002. PubMedCAS Google Scholar
Ravagnan L, Roumier T, Kroemer G. Mitochondria, the killer organelles and their weapons.J Cell Physiol 192: 131–137, 2002. PubMedCAS Google Scholar
Hengartner MO. Programmed cell death in the nematode C. elegans.Recent Prog Horm Res 54: 213–222, 1999. PubMedCAS Google Scholar
Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW et al. Human ICE/ced-3 protease nomenclature [letter].Cell 87: 171, 1996. PubMedCAS Google Scholar
Ethell DW, Bossy-Wetzel E, Bredesen DE. Caspase 7 can cleave tumor necrosis factor receptor-I (p60) at a non-consensus motif, in vitro.Biochim Biophys Acta 1541: 231–238, 2001. PubMedCAS Google Scholar
Cohen GM. Caspases: the executioners of apoptosis.Biochem J 326: 1–16, 1997. PubMedCAS Google Scholar
Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice.Nature 384: 368–372, 1996. PubMedCAS Google Scholar
Yakovlev AG, Faden AI. Caspase-dependent apoptotic pathways in CNS injury.Mol Neurobiol 24: 131–144, 2001. PubMedCAS Google Scholar
Aravind L, Dixit VM, Koonin EV. The domains of death: evolution of the apoptosis machinery.Trends Biochem Sci 24: 47–53, 1999. PubMedCAS Google Scholar
Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner.J Cell Biol 144: 281–292, 1999. PubMedCAS Google Scholar
Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors.Cell 94: 481–490, 1998. PubMedCAS Google Scholar
Cory S, Adams JM. The Bcl2 family: Regulators of the cellular life-or-death switch.Nat Rev Cancer 2: 647–656, 2002. PubMedCAS Google Scholar
Yakovlev AG, Ota K, Wang G, Movsesyan V, Bao WL, Yoshihara K et al. Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury.J Neurosci 21: 7439–7446, 2001. PubMedCAS Google Scholar
Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9.Cell 94: 325–337, 1998. PubMedCAS Google Scholar
Gonzalez-Garcia M, Perez-Ballestero R, Ding L, Duan L, Boise LH, Thompson CB et al. Bcl-XL is the major Bcl-x mRNA form expressed during murine development and its product localizes to mitochondria.Development 120: 3033–3042, 1994. PubMedCAS Google Scholar
Motoyama N, Wang F, Roth KA, Sawa H, Nakayama K, Negishi I et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice.Science 267: 1506–1510, 1995. PubMedCAS Google Scholar
Moriishi K, Huang DC, Cory S, Adams JM. Bcl-2 family members do not inhibit apoptosis by binding the caspase activator Apaf-1.Proc Natl Acad Sci USA 96: 9683–9688, 1999. PubMedCAS Google Scholar
Hausmann G, O’Reilly LA, van Driel R, Beaumont JG, Strasser A, Adams JM et al. Pro-apoptotic apoptosis protease-activating factor 1 (Apaf-1) has a cytoplasmic localization distinct from Bcl-2 or Bcl-x(L).J Cell Biol 149: 623–634, 2000. PubMedCAS Google Scholar
Shimizu S, Konishi A, Kodama T, Tsujimoto Y. Bh4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death [Erratum 1;97:9347, 2000].Proc Natl Acad Sci USA 97: 3100–3105, 2000. PubMedCAS Google Scholar
Fujita N, Nagahashi A, Nagashima K, Rokudai S, Tsuruo T. Acceleration of apoptotic cell death after the cleavage of Bcl-XL protein by caspase-3-like proteases.Oncogene 17: 1295–1304, 1998. PubMedCAS Google Scholar
Hsu YT, Wolter KG, Youle RJ. Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis.Proc Natl Acad Sci USA 94: 3668–3672, 1997. PubMedCAS Google Scholar
Gross A, Jockel J, Wei MC, Korsmeyer SJ. Enforced dimerization of Bax results in its translocation, mitochondrial dysfunction and apoptosis.EMBO J 17: 3878–3885, 1998. PubMedCAS Google Scholar
Shindler KS, Latham CB, Roth KA. Bax deficiency prevents the increased cell death of immature neurons in bcl-x-deficient mice.J Neurosci 17: 3112–3119, 1997. PubMedCAS Google Scholar
Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T et al. Bax and Bak regulation of endoplasmic reticulum CA2+: a control point for apoptosis.Science 300: 135–139, 2003. PubMedCAS Google Scholar
Bossy-Wetzel E, Green DR. Caspases induce cytochrome c release from mitochondria by activating cytosolic factors.J Biol Chem 274: 17484–17490, 1999. PubMedCAS Google Scholar
Lassus P, Opitz-Araya X, Lazebnik Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization.Science 297: 1352–1354, 2002. PubMedCAS Google Scholar
Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES. Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria.J Biol Chem 277: 13430–13437, 2002. PubMedCAS Google Scholar
Schuler M, Bossy-Wetzel E, Goldstein JC, Fitzgerald P, Green DR. P53 induces apoptosis by caspase activation through mitochondrial cytochrome c release.J Biol Chem 275: 7337–7342, 2000. PubMedCAS Google Scholar
Minn AJ, Boise LH, Thompson CB. Bcl-x(S) antagonizes the protective effects of Bcl-x(L).J Biol Chem 271: 6306–6312, 1996. PubMedCAS Google Scholar
Srinivasula SM, Ahmad M, Guo Y, Zhan Y, Lazebnik Y, Fernandes-Alnemri T et al. Identification of an endogenous dominant-negative short isoform of caspase-9 that can regulate apoptosis.Cancer Res 59: 999–1002, 1999. PubMedCAS Google Scholar
Benedict MA, Hu Y, Inohara N, Nunez G. Expression and functional analysis of Apaf-1 isoforms. Extra Wd-40 repeat is required for cytochrome c binding and regulated activation of procaspase-9.J Biol Chem 275: 8461–8468, 2000. PubMedCAS Google Scholar
Jiang ZH, Wu JY. Alternative splicing and programmed cell death.Proc Soc Exp Biol Med 220: 64–72, 1999. PubMedCAS Google Scholar
Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E et al. Regulation of cell death protease caspase-9 by phosphorylation.Science 282: 1318–1321, 1998. PubMedCAS Google Scholar
Fujita E, Jinbo A, Matuzaki H, Konishi H, Kikkawa U, Momoi T. Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9.Biochem Biophys Res Commun 264: 550–555, 1999. PubMedCAS Google Scholar
Zhou H, Li XM, Meinkoth J, Pittman RN. Akt regulates cell survival and apoptosis at a postmitochondrial level.J Cell Biol 151: 483–494, 2000. PubMedCAS Google Scholar
Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery.Cell 91: 231–241, 1997. PubMedCAS Google Scholar
Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F et al. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD.Science 284: 339–343, 1999. PubMedCAS Google Scholar
Ayllon V, Martinez AC, Garcia A, Cayla X, Rebollo A. Protein phosphatase 1α is a Ras-activated Bad phosphatase that regulates interleukin-2 deprivation-induced apoptosis.EMBO J 19: 2237–2246, 2000. PubMedCAS Google Scholar
Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death.Cell 80: 285–291, 1995. PubMedCAS Google Scholar
Francois F, Grimes ML. Phosphorylation-dependent Akt cleavage in neural cell in vitro reconstitution of apoptosis.J Neurochem 73: 1773–1776, 1999. PubMedCAS Google Scholar
Hay BA. Understanding IAP function and regulation: a view from drosophila.Cell Death Differ 7: 1045–1056, 2000. PubMedCAS Google Scholar
Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition.Cell 102: 33–42, 2000. PubMedCAS Google Scholar
Hegde R, Srinivasula SM, Zhang Z, Wassell R, Mukattash R, Cilenti L et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction.J Biol Chem 277: 432–438, 2002. PubMedCAS Google Scholar
Deveraux QL, Reed JC. IAP family proteins-suppressors of apoptosis.Genes Dev 13: 239–252, 1999. PubMedCAS Google Scholar
Takahashi R, Deveraux Q, Tamm I, Welsh K, Assa-Munt N, Salvesen GS et al. A single BIR domain of XIAP sufficient for inhibiting caspases.J Biol Chem 273: 7787–7790, 1998. PubMedCAS Google Scholar
Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases.EMBO J 17: 2215–2223, 1998. PubMedCAS Google Scholar
Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death.Mol Cell 8: 613–621, 2001. PubMedCAS Google Scholar
Jiang X, Kim HE, Shu H, Zhao Y, Zhang H, Kofron J et al. Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway.Science 299: 223–226, 2003. PubMedCAS Google Scholar
Matilla A, Koshy BT, Cummings CJ, Isobe T, Orr HT, Zoghbi HY. The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1.Nature 389: 974–978, 1997. PubMedCAS Google Scholar
Pandey P, Saleh A, Nakazawa A, Kumar S, Srinivasula SM, Kumar V et al. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90.EMBO J 19: 4310–4322, 2000. PubMedCAS Google Scholar
Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome.Nat Cell Biol 2: 469–475, 2000. PubMedCAS Google Scholar
Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C et al. Hsp27 negatively regulates cell death by interacting with cytochrome c.Nat Cell Biol 2: 645–652, 2000. PubMedCAS Google Scholar
Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta.Nature 403: 98–103, 2000. PubMedCAS Google Scholar
Bitko V, Barik S. An endoplasmic reticulum-specific stress-activated caspase (caspase-12) is implicated in the apoptosis of A549 epithelial cells by respiratory syncytial virus.J Cell Biochem 80: 441–454, 2001. PubMedCAS Google Scholar
Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis.J Cell Biol 150: 887–894, 2000. PubMedCAS Google Scholar
Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE.Cell 92: 501–509, 1998. PubMedCAS Google Scholar
Kang SJ, Wang S, Hara H, Peterson EP, Namura S, Amin-Hanjani S et al. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions.J Cell Biol 149: 613–622, 2000. PubMedCAS Google Scholar
Schotte P, Van Criekinge W, Van de Craen M, Van Loo G, Desmedt M, Grooten J et al. Cathepsin B-mediated activation of the proinflammatory caspase-11.Biochem Biophys Res Commun 251: 379–387, 1998. PubMedCAS Google Scholar
Yamashima T. Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates.Prog Neurobiol 62: 273–295, 2000. PubMedCAS Google Scholar
Troy CM, Stefanis L, Greene LA, Shelanski ML. Nedd2 is required for apoptosis after trophic factor withdrawal, but not superoxide dismutase (SOD1) downregulation, in sympathetic neurons and PC12 cells.J Neurosci 17: 1911–1918, 1997. PubMedCAS Google Scholar
Bergeron L, Perez GI, Macdonald G, Shi L, Sun Y, Jurisicova A et al. Defects in regulation of apoptosis in caspase-2-deficient mice.Genes Dev 12: 1304–1314, 1998. PubMedCAS Google Scholar
Adelson PD, Kochanek PM. Head injury in children.J Child Neurol 13: 2–15, 1998. PubMedCAS Google Scholar
de Bilbao F, Guarin E, Nef P, Vallet P, Giannakopoulos P, Dubois-Dauphin M. Postnatal distribution of cpp32/caspase 3 mRNA in the mouse central nervous system: an in situ hybridization study.J Comp Neurol 409: 339–357, 1999. PubMed Google Scholar
Bittigau P, Sifringer M, Pohl D, Stadthaus D, Ishimaru M, Shimizu H et al. Apoptotic neurodegeneration following trauma is markedly enhanced in the immature brain.Ann Neurol 45: 724–735, 1999. PubMedCAS Google Scholar
Hu BR, Liu CL, Ouyang Y, Blomgren K, Siesjo BK. Involvement of caspase-3 in cell death after hypoxia-ischemia declines during brain maturation.J Cereb Blood Flow Metab 20: 1294–1300, 2000. PubMedCAS Google Scholar
van Loo G, Saelens X, van Gurp M, MacFarlane M, Martin SJ, Vandenabeele P. The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet.Cell Death Differ 9: 1031–1042, 2002. PubMed Google Scholar
Volbracht C, Leist M, Kolb SA, Nicotera P. Apoptosis in caspase-inhibited neurons.Mol Med 7: 36–48, 2001. PubMedCAS Google Scholar
Zhan RZ, Wu C, Fujihara H, Taga K, Qi S, Naito M et al. Both caspase-dependent and caspase-independent pathways may be involved in hippocampal CA1 neuronal death because of loss of cytochrome c from mitochondria in a rat forebrain ischemia model.J Cereb Blood Flow Metab 21: 529–540, 2001. PubMedCAS Google Scholar
Oppenheim RW, Flavell RA, Vinsant S, Prevette D, Kuan CY, Rakic P. Programmed cell death of developing mammalian neurons after genetic deletion of caspases.J Neurosci 21: 4752–4760, 2001. PubMedCAS Google Scholar
Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N et al. Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis.FASEB J 14: 729–739, 2000. PubMedCAS Google Scholar
Loeffler M, Daugas E, Susin SA, Zamzami N, Metivier D, Nieminen AL et al. Dominant cell death induction by extramitochondrially targeted apoptosis-inducing factor.FASEB J 15: 758–767, 2001. PubMedCAS Google Scholar
Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM et al. Molecular characterization of mitochondrial apoptosis-inducing factor.Nature 397: 441–446, 1999. PubMedCAS Google Scholar
Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor.Nat Cell Biol 3: 839–843, 2001. PubMedCAS Google Scholar
Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN et al. The harlequin mouse mutation downregulates apoptosis-inducing factor.Nature 419: 367–374, 2002. PubMedCAS Google Scholar
Zhang X, Chen J, Graham SH, Du L, Kochanek PM, Draviam R et al. Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite.J Neurochem 82: 181–191, 2002. PubMedCAS Google Scholar
Cote J, Ruiz-Carrillo A. Primers for mitochondrial DNA replication generated by endonuclease G.Science 261: 765–769, 1993. PubMedCAS Google Scholar
Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria.Nature 412: 95–99, 2001. PubMedCAS Google Scholar
Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis.Cell 89: 175–184, 1997. PubMedCAS Google Scholar
van Loo G, Schotte P, van Gurp M, Demol H, Hoorelbeke B, Gevaert K et al. Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation.Cell Death Differ 8: 1136–1142, 2001. PubMed Google Scholar
Widlak P, Li LY, Wang X, Garrard WT. Action of recombinant human apoptotic endonuclease G on naked DNA and chromatin substrates: cooperation with exonuclease and DNase I.J Biol Chem 276: 48404–48409, 2001. PubMedCAS Google Scholar
Srinivasula SM, Datta P, Fan XJ, Fernandes-Alnemri T, Huang Z, Alnemri ES. Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway.J Biol Chem 275: 36152–36157, 2000. PubMedCAS Google Scholar
Roberts DL, Merrison W, MacFarlane M, Cohen GM. The inhibitor of apoptosis protein-binding domain of Smac is not essential for its proapoptotic activity.J Cell Biol 153: 221–228, 2001. PubMedCAS Google Scholar
Shibata M, Hattori H, Sasaki T, Gotoh J, Hamada J, Fukuuchi Y. Subcellular localization of a promoter and an inhibitor of apoptosis (Smac/DIABLO and XIAP) during brain ischemia/reperfusion.Neuroreport 13: 1985–1988, 2002. PubMedCAS Google Scholar
Okada H, Suh WK, Jin J, Woo M, Du C, Elia A et al. Generation and characterization of Smac/DIABLO-deficient mice.Mol Cell Biol 22: 3509–3517, 2002. PubMedCAS Google Scholar
Syntichaki P, Tavernarakis N. Death by necrosis. Uncontrollable catastrophe, or is there order behind the chaos?EMBO Rep 3: 604–609, 2002. PubMedCAS Google Scholar
Proskuryakov SY, Konoplyannikov AG, Gabai VL. Necrosis: a specific form of programmed cell death?Exp Cell Res 283: 1–16, 2003. PubMedCAS Google Scholar
Kitanaka C, Kuchino Y. Caspase-independent programmed cell death with necrotic morphology.Tanpakushitsu Kakusan Koso 44: 2091–2100, 1999. PubMedCAS Google Scholar
Syntichaki P, Xu K, Driscoll M, Tavernarakis N. Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans.Nature 419: 939–944, 2002. PubMedCAS Google Scholar
Saido TC, Sorimachi H, Suzuki K. Calpain: new perspectives in molecular diversity and physiological-pathological involvement.FASEB J 8: 814–822, 1994. PubMedCAS Google Scholar
Bartus RT, Hayward NJ, Elliott PJ, Sawyer SD, Baker KL, Dean RL et al. Calpain inhibitor AK295 protects neurons from focal brain ischemia. Effects of postocclusion intra-arterial administration.Stroke 25: 2265–2270, 1994. PubMedCAS Google Scholar
Kampfl A, Posmantur RM, Zhao X, Schmutzhard E, Clifton GL, Hayes RL. Mechanisms of calpain proteolysis following traumatic brain injury: implications for pathology and therapy: a review and update.J Neurotrauma 14: 121–134, 1997. PubMedCAS Google Scholar
Saito K, Elce JS, Hamos JE, Nixon RA. Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration.Proc Natl Acad Sci USA 90: 2628–2632, 1993. PubMedCAS Google Scholar
Yoshida M, Yamashima T, Zhao L, Tsuchiya K, Kohda Y, Tonchev AB et al. Primate neurons show different vulnerability to transient ischemia and response to cathepsin inhibition.Acta Neuropathol (Berl) 104: 267–272, 2002. CAS Google Scholar
Nakamura Y, Takeda M, Suzuki H, Morita H, Tada K, Hariguchi S et al. Age-dependent change in activities of lysosomal enzymes in rat brain.Mech Ageing Dev 50: 215–225, 1989. PubMedCAS Google Scholar
Shimizu S, Eguchi Y, Kamiike W, Waguri S, Uchiyama Y, Matsuda H et al. Retardation of chemical hypoxia-induced necrotic cell death by Bcl-2 and ICE inhibitors: possible involvement of common mediators in apoptotic and necrotic signal transductions.Oncogene 12: 2045–2050, 1996. PubMedCAS Google Scholar
Maas AI. Neuroprotective agents in traumatic brain injury.Expert Opin Investig Drugs 10: 753–767, 2001. PubMedCAS Google Scholar
Allen JW, Knoblach SM, Faden AI. Combined mechanical trauma and metabolic impairment in vitro induces NMDA receptor-dependent neuronal cell death and caspase-3-dependent apoptosis.FASEB J 13: 1875–1882, 1999. PubMedCAS Google Scholar
Faden AI, Fox GB, Fan L, Araldi GL, Qiao L, Wang S et al. Novel TRH analog improves motor and cognitive recovery after traumatic brain injury in rodents.Am J Physiol (Lond) 277: R1196-R1204, 1999. CAS Google Scholar
Faden AI. Pharmacotherapeutic treatment approaches for brain and spinal cord trauma. In: Neurotrauma (Narayan RK, Wilberger J, Povlishock JT, eds), pp 1479–1490. New York: McGraw-Hill, 1996. Google Scholar
Lavie G, Teichner A, Shohami E, Ovadia H, Leker RR. Long-term cerebroprotective effects of dexanabinol in a model of focal cerebral ischemia.Brain Res 901: 195–201, 2001. PubMedCAS Google Scholar
Callaway JK, Beart PM, Jarrott B, Giardina SF. Incorporation of sodium channel blocking and free radical scavenging activities into a single drug, AM-36, results in profound inhibition of neuronal apoptosis.Br J Pharmacol 132: 1691–1698, 2001. PubMedCAS Google Scholar
Callaway JK, Knight MJ, Watkins DJ, Beart PM, Jarrott B. Delayed treatment with AM-36, a novel neuroprotective agent, reduces neuronal damage after endothelin-1-induced middle cerebral artery occlusion in conscious rats.Stroke 30: 2704–2712, 1999. PubMedCAS Google Scholar
Faden AI, Fox GB, Di X, Knoblach SM, Cernak I, Mullins P et al. Neuroprotective and nootropic actions of a novel cyclized dipeptide following controlled cortical impact injury in mice.J Cereb Blood Flow Metab 23: 355–363, 2003. PubMedCAS Google Scholar
Faden AI, Knoblach SM, Cernak I, Fan L, Vink R, Roth BL et al. Novel diketopiperazine enhances motor and cognitive recovery after traumatic brain injury in rats and shows neuroprotection in vitro.J Cereb Blood Flow Metab 23: 342–354, 2003. PubMedCAS Google Scholar