Transgenic models of Alzheimer’s disease: Learning from animals (original) (raw)

References

  1. Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 60: 1119–1122, 2003.
    PubMed Google Scholar
  2. Citron M. Strategies for disease modification in Alzheimer’s disease. Nat Rev Neurosci 5: 677–685, 2004.
    PubMed CAS Google Scholar
  3. Faber-Langendoen K, Morris JC, Knesevich JW, LaBarge E, Miller JP, Berg L. Aphasia in senile dementia of the Alzheimer type. Ann Neurol 23: 365–370, 1988.
    PubMed CAS Google Scholar
  4. Rubin EH, Morris JC, Storandt M, Berg L. Behavioral changes in patients with mild senile dementia of the Alzheimer’s type. Psychiatry Res 21: 55–62, 1987.
    PubMed CAS Google Scholar
  5. Swearer JM, Drachman DA, O’Donnell BF, Mitchell AL. Troublesome and disruptive behaviors in dementia. Relationships to diagnosis and disease severity. J Am Geriatr Soc 36: 784–790, 1988.
    PubMed CAS Google Scholar
  6. Morris JC, Drazner M, Fulling K, Grant EA, Goldring J. Clinical and pathological aspects of parkinsonism in Alzheimer’s disease. A role for extranigral factors? Arch Neurol 46: 651–657, 1989.
    PubMed CAS Google Scholar
  7. Romanelli MF, Morris JC, Ashkin K, Coben LA. Advanced Alzheimer’s disease is a risk factor for late-onset seizures. Arch Neurol 47: 847–850, 1990.
    PubMed CAS Google Scholar
  8. Alzheimer A. Ubereine eigenartige Erkrankung der Hirnrinde. [A peculiar disease of the cerebral cortex.] Allg Z Psychiatr-Gerichtl Med 64: 146–148, 1907.
    Google Scholar
  9. Divry P, Florkin M. Sur les proprietés optiques de l’amaloide. [On the optical properties of amyloid.] C R Soc Biol 97: 1808–1810, 1927.
    Google Scholar
  10. Glenner GG, Wong CW. Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122: 1131–1135, 1984.
    PubMed CAS Google Scholar
  11. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, et al. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: 733–736, 1987.
    PubMed CAS Google Scholar
  12. Yamaguchi H, Hirai S, Morimatsu M, Shoji M, Ihara Y. A variety of cerebral amyloid deposits in the brains of the Alzheimer-type dementia demonstrated by β protein immunostaining. Acta Neuropathol (Berl) 76: 541–549, 1988.
    CAS Google Scholar
  13. Yamaguchi H, Hirai S, Morimatsu M, Shoji M, Harigaya Y. Diffuse type of senile plaques in the brains of Alzheimer-type dementia. Acta Neuropathol (Berl) 77: 113–119, 1988.
    CAS Google Scholar
  14. Dickson TC, Vickers JC. The morphological phenotype of β-amyloid plaques and associated neuritic changes in Alzheimer’s disease. Neuroscience 105: 99–107, 2001.
    PubMed CAS Google Scholar
  15. Hyman BT, Van Hoesen GW, Kromer LJ, Damasio AR. Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann Neurol 20: 472–481, 1986.
    PubMed CAS Google Scholar
  16. Rogers J, Morrison JH. Quantitative morphology and regional and laminar distributions of senile plaques in Alzheimer’s disease. J Neurosci 5: 2801–2808, 1985.
    PubMed CAS Google Scholar
  17. Pearson RC, Esiri MM, Hioms RW, Wilcock GK, Powell TP. Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc Natl Acad Sci USA 82: 4531–4534, 1985.
    PubMed CAS Google Scholar
  18. Duyckaerts C, Hauw JJ, Bastenaire F, Piette F, Poulain C, Rainsard V, et al. Laminar distribution of neocortical senile plaques in senile dementia of the Alzheimer type. Acta Neuropathol (Berl) 70: 249–256, 1986.
    CAS Google Scholar
  19. Ingelsson M, Fukumoto H, Newell KL, Growdon JH, Hedley-Whyte ET, Frosch MP, et al. Early Aβ accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 62: 925–931, 2004.
    PubMed CAS Google Scholar
  20. Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18: 351–357, 1997.
    PubMed CAS Google Scholar
  21. Urbanc B, Cruz L, Buldyrev SV, Havlin S, Irizarry MC, Stanley HE, et al. Dynamics of plaque formation in Alzheimer’s disease. Biophys J 76: 1330–1334, 1999.
    PubMed CAS Google Scholar
  22. Cruz L, Urbane B, Buldyrev SV, Christie R, Gomez-Isla T, Havlin S, et al. Aggregation and disaggregation of senile plaques in Alzheimer disease. Proc Natl Acad Sci USA 94: 7612–7616, 1997.
    PubMed CAS Google Scholar
  23. Kidd M. Paired helical filaments in electron microscopy in Alzheimer’s disease. Nature 197: 192–193, 1963.
    PubMed CAS Google Scholar
  24. Brion JP, Couck AM, Passareiro E, Flament-Durand J. Neurofibrillary tangles of Alzheimer’s disease: an immunohistochemical study. J Submicrosc Cytol 17: 89–96, 1985.
    PubMed CAS Google Scholar
  25. Hyman BT, Van Horsen GW, Damasio AR, Barnes CL. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225: 1168–1170, 1984.
    PubMed CAS Google Scholar
  26. Hof PR, Morrison JH. The cellular basis of cortical disconnection in Alzheimer disease and related dementing conditions. In: Alzheimer disease (Terry R, Katzman R, Bick KL, Sisoda SS, eds), pp 207–232. Philadelphia: Lippincott Williams & Wilkins, 1999.
    Google Scholar
  27. Klucken J, McLean PJ, Gomez-Tortosa E, Ingelsson M, Hyman BT. Neuritic alterations and neural system dysfunction in Alzheimer’s disease and dementia with Lewy bodies. Neurochem Res 28: 1683–1691, 2003.
    PubMed CAS Google Scholar
  28. Arriagada PV, Marzloff K, Hyman BT. Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42: 1681–1688, 1992.
    PubMed CAS Google Scholar
  29. Wilcock GK, Esiri MM. Plaques, tangles and dementia. A quantitative study. J Neurol Sci 56: 343–356, 1982.
    PubMed CAS Google Scholar
  30. Giannakopoulos P, Herrmann FR, Bussiere T, Bouras C, Kovari E, Perl DP, et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60: 1495–1500, 2003.
    PubMed CAS Google Scholar
  31. Morrison JH, Hof PR. Life and death of neurons in the aging brain. Science 278: 412–419, 1997.
    PubMed CAS Google Scholar
  32. Bussiere T, Giannakopoulos P, Bouras C, Perl DP, Morrison JH, Hof PR. Progressive degeneration of nonphosphorylated neurofilament protein-enriched pyramidal neurons predicts cognitive impairment in Alzheimer’s disease: stereologic analysis of prefrontal cortex area 9. J Comp Neurol 463: 281–302, 2003.
    PubMed CAS Google Scholar
  33. Squire LR, Zola-Morgan S. The medial temporal lobe memory system. Science 253: 1380–1386, 1991.
    PubMed CAS Google Scholar
  34. Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41: 17–24, 1997.
    PubMed CAS Google Scholar
  35. West MJ, Coleman PD, Flood DG, Troncoso JC. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344: 769–772, 1994.
    PubMed CAS Google Scholar
  36. Spires TL, Hyman BT. Neuronal structure is altered by amyloid plaques. Rev Neurosci, 15: 267–278, 2004.
    PubMed Google Scholar
  37. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30: 572–580, 1991.
    PubMed CAS Google Scholar
  38. Masliah E, Hansen L, Albright T, Mallory M, Terry RD. Immunoelectron microscopic study of synaptic pathology in Alzheimer’s disease. Acta Neuropathol (Berl) 81: 428–433, 1991.
    CAS Google Scholar
  39. DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27: 457–464, 1990.
    PubMed CAS Google Scholar
  40. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297: 353–356, 2002.
    PubMed CAS Google Scholar
  41. Tanzi RE, Bertram L. New frontiers in Alzheimer’s disease genetics. Neuron 32: 181–184, 2001.
    PubMed CAS Google Scholar
  42. St George-Hyslop PH. Genetic factors in the genesis of Alzheimer’s disease. Ann NY Acad Sci 924: 1–7, 2000.
    PubMed CAS Google Scholar
  43. Wisniewski KE, Dalton AJ, McLachlan C, Wen GY, Wisniewski HM. Alzheimer’s disease in Down’s syndrome: clinicopathologic studies. Neurology 35: 957–961, 1985.
    PubMed CAS Google Scholar
  44. Goate AM, Haynes AR, Owen MJ, Farrall M, James LA, Lai LY, et al. Predisposing locus for Alzheimer’s disease on chromosome 21. Lancet 1: 352–355, 1989.
    PubMed CAS Google Scholar
  45. Tanzi RE, Gusella JF, Watkins PC, Bruns GA, St George-Hyslop P, Van Keuren ML, et al. Amyloid β protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235: 880–884, 1987.
    PubMed CAS Google Scholar
  46. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349: 704–706, 1991.
    PubMed CAS Google Scholar
  47. Naruse S, Igarashi S, Kobayashi H, Aoki K, Inuzuka T, Kaneko K, et al. Mis-sense mutation Val-Ile in exon 17 of amyloid precursor protein gene in Japanese familial Alzheimer’s disease. Lancet 337: 978–979, 1991.
    PubMed CAS Google Scholar
  48. Alzheimer’s Disease Collaborative Research Group. The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nat Genet 11: 219–222, 1995.
    Google Scholar
  49. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375: 754–760, 1995.
    PubMed CAS Google Scholar
  50. St George-Hyslop P, Haines J, Rogaev E, Mortilla M, Vaula G, Pericak-Vance M, et al. Genetic evidence for a novel familial Alzheimer’s disease locus on chromosome 14. Nat Genet 2: 330–334, 1992.
    PubMed CAS Google Scholar
  51. Levy-Lahad E, Wijsman EM, Nemens E, Anderson L, Goddard KA, Weber JL, et al. A familial Alzheimer’s disease locus on chromosome 1. Science 269: 970–973, 1995.
    PubMed CAS Google Scholar
  52. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376: 775–778, 1995.
    PubMed CAS Google Scholar
  53. De Strooper B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active γ-secretase complex. Neuron 38: 9–12, 2003.
    PubMed Google Scholar
  54. Selkoe DJ. Biology of β-amyloid precursos protein and the mechanism of Alzheimer disease. In: Alzheimer disease (Terry RD, Katzman R, Bick KL, Sisoda SS, eds), pp 293–310. Philadelphia: Lippincott Williams & Wilkins, 1999.
    Google Scholar
  55. Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43: 1467–1472, 1993.
    PubMed CAS Google Scholar
  56. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261: 921–923, 1993.
    PubMed CAS Google Scholar
  57. Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC Jr, et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 7: 180–184, 1994.
    PubMed CAS Google Scholar
  58. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90: 1977–1981, 1993.
    PubMed CAS Google Scholar
  59. Wisniewski T, Frangione B. Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci Lett 135: 235–238, 1992.
    PubMed CAS Google Scholar
  60. Foster NL, Wilhelmsen K, Sima AA, Jones MZ, D’Amato CJ, Gilman S. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference Participants. Ann Neurol 41: 706–715, 1997.
    PubMed CAS Google Scholar
  61. Kawabata S, Higgins GA, Gordon JW. Amyloid plaques, neurofibrillary tangles and neuronal loss in brains of transgenic mice overexpressing a C-terminal fragment of human amyloid precursor protein. Nature 354: 476–478, 1991.
    PubMed CAS Google Scholar
  62. Wirak DO, Bayney R, Ramabhadran TV, Fracasso RP, Hart JT, Hauer PE, et al. Deposits of amyloid β protein in the central nervous system of transgenic mice. Science 253: 323–325, 1991.
    PubMed CAS Google Scholar
  63. Games D, Actams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373: 523–527, 1995.
    PubMed CAS Google Scholar
  64. Quon D, Wang Y, Catalano R, Scardina JM, Murakami K, Cordell B. Formation of β-amyloid protein deposits in brains of transgenic mice. Nature 352: 239–241, 1991.
    PubMed CAS Google Scholar
  65. Mucke L, Masliah E, Johnson WB, Ruppe MD, Afford M, Rockenstein EM, et al. Synaptotrophic effects of human amyloid β protein precursors in the cortex of transgenic mice. Brain Res 666: 151–167, 1994.
    PubMed CAS Google Scholar
  66. Higgins LS, Holtzman DM, Rabin J, Mobley WC, Cordeil B. Transgenic mouse brain histopathology resembles early Alzheimer’s disease. Ann Neurol 35: 598–607, 1994.
    PubMed CAS Google Scholar
  67. Masliah E, Sisk A, Mallory M, Mucke L, Schenk D, Games D. Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F β-amyloid precursor protein and Alzheimer’s disease. J Neurosci 16: 5795–5811, 1996.
    PubMed CAS Google Scholar
  68. Irizarry MC, Soriano F, McNamara M, Page KJ, Schenk D, Games D, et al. Aβ deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J Neurosci 17: 7053–7059, 1997.
    PubMed CAS Google Scholar
  69. Chen G, Chen KS, Knox J, Inglis J, Bernard A, Martin SJ, et al. A learning deficit related to age and β-amyloid plaques in a mouse model of Alzheimer’s disease. Nature 408: 975–979, 2000.
    PubMed CAS Google Scholar
  70. Masliah E, Sisk A, Mallory M, Games D. Neurofibrillary pathology in transgenic mice overexpressing V717F β-amyloid precursor protein. J Neuropathol Exp Neurol 60: 357–368, 2001.
    PubMed CAS Google Scholar
  71. Urbanc B, Cruz L, Le R, Sanders J, Ashe KH, Duff K, et al. Neurotoxic effects of thioflavin S-positive amyloid deposits in transgenic mice and Alzheimer’s disease. Proc Natl Acad Sci USA 99: 13990–13995, 2002.
    PubMed CAS Google Scholar
  72. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274: 99–102, 1996.
    PubMed CAS Google Scholar
  73. Chapman PF, White GL, Jones MW, Cooper-Blacketer D, Marshall VJ, Irizarry M, et al. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci 2: 271–276, 1999.
    PubMed CAS Google Scholar
  74. Stem EA, Bacskai BJ, Hickey GA, Attenello FJ, Lombardo JA, Hyman BT. Cortical synaptic integration in vivo is disrupted by amyloid-β plaques. J Neurosci 24: 4535–4540, 2004.
    Google Scholar
  75. Irizarry MC, McNamara M, Fedorchak K, Hsiao K, Hyman BT. APPSw transgenic mice develop age-related A β deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol 56: 965–973, 1997.
    PubMed CAS Google Scholar
  76. Lanz TA, Carter DB, Merchant KM. Dendritic spine loss in the hippocampus of young PDAPP and Tg2576 mice and its prevention by the ApoE2 genotype. Neurobiol Dis 13: 246–253, 2003.
    PubMed CAS Google Scholar
  77. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94: 13287–13292, 1997.
    PubMed CAS Google Scholar
  78. Van Dam D, D’Hooge R, Staufenbiel M, Van Ginneken C, Van Meir F, De Deyn PP. Age-dependent cognitive decline in the APP23 model precedes amyloid deposition. Eur J Neurosci 17: 388–396, 2003.
    PubMed Google Scholar
  79. Kelly PH, Bondolfi L, Hunziker D, Schlecht HP, Carver K, Maguire E, et al. Progressive age-related impairment of cognitive behavior in APP23 transgenic mice. Neurobiol Aging 24: 365–378, 2003.
    PubMed CAS Google Scholar
  80. Lalonde R, Dumont M, Staufenbiel M, Sturchler-Pierrat C, Strazielle C. Spatial learning, exploration, anxiety, and motor coordination in female APP23 transgenic mice with the Swedish mutation. Brain Res 956: 36–44, 2002.
    PubMed CAS Google Scholar
  81. Calhoun ME, Wiederhold KH, Abramowski D, Phinney AL, Probst A, Sturchler-Pierrat C, et al. Neuron loss in APP transgenic mice. Nature 395: 755–756, 1998.
    PubMed CAS Google Scholar
  82. Borchelt DR, Ratovitski T, van Lare J, Lee MK, Gonzales V, Jenkins NA, et al. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19: 939–945, 1997.
    PubMed CAS Google Scholar
  83. Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, et al. Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβl-42/1-40 ratio in vitro and in vivo. Neuron 17: 1005–1013, 1996.
    PubMed CAS Google Scholar
  84. Dudal S, Krzywkowski P, Paquette J, Morissette C, Lacombe D, Tremblay P, et al. Inflammation occurs early during the Aβ deposition process in TgCRND8 mice. Neurobiol Aging 25: 861–871, 2004.
    PubMed CAS Google Scholar
  85. Chishti MA, Yang DS, Janus C, Phinney AL, Home P, Pearson J, et al. Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 276: 21562–21570, 2001.
    PubMed CAS Google Scholar
  86. Duff K, Eckman C, Zehr C, Yu X, Prada CM, Perez-tur J, et al. Increased amyloid-β42(43) in brains of mice expressing mutant presenilin 1. Nature 383: 710–713, 1996.
    PubMed CAS Google Scholar
  87. Herreman A, Hartmann D, Annaert W, Saftig P, Craessaerts K, Serneels L, et al. Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc Natl Acad Sci USA 96: 11872–11877, 1999.
    PubMed CAS Google Scholar
  88. Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4: 97–100, 1998.
    PubMed CAS Google Scholar
  89. Takeuchi A, Irizarry MC, Duff K, Saido TC, Hsiao Ashe K, Hasegawa M, et al. Age-related amyloid β deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amyloid β precursor protein Swedish mutant is not associated with global neuronal loss. Am J Pathol 157: 331–339, 2000.
    PubMed CAS Google Scholar
  90. Holcomb LA, Gordon MN, Jantzen P, Hsiao K, Duff K, Morgan D. Behavioral changes in transgenic mice expressing both amyloid precursor protein and presenilin-1 mutations: lack of association with amyloid deposits. Behav Genet 29: 177–185, 1999.
    PubMed CAS Google Scholar
  91. Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S. Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89: 629–639, 1997.
    PubMed CAS Google Scholar
  92. Qian S, Jiang P, Guan XM, Singh G, Trumbauer ME, Yu H, et al. Mutant human presenilin 1 protects presenilin 1 null mouse against embryonic lethality and elevates Aβl-42/43 expression. Neuron 20: 611–617, 1998.
    PubMed CAS Google Scholar
  93. Flood DG, Howland DS, Lin Y-G, Ciallella JR, Trusko SP, Scott RW, Savage MS. Aβ deposition in a transgenic rat model of Alzheimer’s disease. Poster 842.22 presented at Society for Neuroscience meeting, New Orleans, LA, 2003.
  94. Echeverria V, Ducatenzeiler A, Alhonen L, Janne J, Grant SM, Wandosell F, et al. Rat transgenic models with a phenotype of intracellular Aβ accumulation in hippocampus and cortex. J Alzheimers Dis 6: 209–219, 2004.
    PubMed CAS Google Scholar
  95. Lopez EM, Bell KF, Ribeiro-Da-Silva A, Cuello AC. Early changes in neurons of the hippocampus and neocortex in transgenic rats expressing intracellular human a-β. J Alzheimers Dis 6: 421–431, 2004.
    PubMed CAS Google Scholar
  96. Strittmatter WJ, Roses AD. Apolipoprotein E and Alzheimer’s disease. Annu Rev Neurosci 19: 53–77, 1996.
    PubMed CAS Google Scholar
  97. Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240: 622–630, 1988.
    PubMed CAS Google Scholar
  98. Paik YK, Chang DJ, Reardon CA, Davies GE, Mahley RW, Taylor JM. Nucleotide sequence and structure of the human apolipoprotein E gene. Proc Natl Acad Sci USA 82: 3445–3449, 1985.
    PubMed CAS Google Scholar
  99. Lin-Lee YC, Kao FT, Cheung P, Chan L. Apolipoprotein E gene mapping and expression: localization of the structural gene to human chromosome 19 and expression of ApoE mRNA in lipoprotein- and non-lipoprotein-producing tissues. Biochemistry 24: 3751–3756, 1985.
    PubMed CAS Google Scholar
  100. Namba Y, Tomonaga M, Kawasaki H, Otomo E, Ikeda K. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res 541: 163–166, 1991.
    PubMed CAS Google Scholar
  101. Arelin K, Kinoshita A, Whelan CM, Irizarry MC, Rebeck GW, Strickland DK, et al. LRP and senile plaques in Alzheimer’s disease: colocalization with apolipoprotein E and with activated astrocytes. Mol Brain Res 104: 38–46, 2002.
    PubMed CAS Google Scholar
  102. Masliah E, Mallory M, Ge N, Alford M, Veinbergs I, Roses AD. Neurodegeneration in the central nervous system of apoE-deficient mice. Exp Neurol 136: 107–122, 1995.
    PubMed CAS Google Scholar
  103. Masliah E, Samuel W, Veinbergs I, Mallory M, Mante M, Saitoh T. Neurodegeneration and cognitive impairment in apoE-deficient mice is ameliorated by infusion of recombinant apoE. Brain Res 751: 307–314, 1997.
    PubMed CAS Google Scholar
  104. Gordon I, Grauer E, Genis I, Sehayek E, Michaelson DM. Memory deficits and cholinergic impairments in apolipoprotein E-deficient mice. Neurosci Lett 199: 1–4, 1995.
    PubMed CAS Google Scholar
  105. Irizarry MC, Rebeck GW, Cheung B, Bales K, Paul SM, Holzman D, et al. Modulation of A β deposition in APP transgenic mice by an apolipoprotein E null background. Ann NY Acad Sci 920: 171–178, 2000.
    PubMed CAS Google Scholar
  106. Bales KR, Verina T, Dodel RC, Du Y, Altstiel L, Bender M, et al. Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nat Genet 17: 263–264, 1997.
    PubMed CAS Google Scholar
  107. Bales KR, Verina T, Cummins DJ, Du Y, Dodel RC, Saura J, et al. Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 96: 15233–15238, 1999.
    PubMed CAS Google Scholar
  108. Holtzman DM, Fagan AM, Mackey B, Tenkova T, Sartorius L, Paul SM, et al. Apolipoprotein E facilitates neuritic and cerebrovascular plaque formation in an Alzheimer’s disease model. Ann Neurol 47: 739–747, 2000.
    PubMed CAS Google Scholar
  109. Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 97: 2892–2897, 2000.
    PubMed CAS Google Scholar
  110. Irizarry MC, Cheung BS, Rebeck GW, Paul SM, Bales KR, Hyman BT. Apolipoprotein E affects the amount, form, and anatomical distribution of amyloid β-peptide deposition in homozygous APP(V717F) transgenic mice. Acta Neuropathol (Berl) 100: 451–458, 2000.
    CAS Google Scholar
  111. Fryer JD, Taylor JW, DeMattos RB, Bales KR, Paul SM, Parsadanian M, et al. Apolipoprotein E markedly facilitates age-dependent cerebral amyloid angiopathy and spontaneous hemorrhage in amyloid precursor protein transgenic mice. J Neurosci 23: 7889–7896, 2003.
    PubMed CAS Google Scholar
  112. Mann KM, Thomgate FE, Katoh-Fukui Y, Hamanaka H, Williams DL, Fujita S, et al. Independent effects of APOE on cholesterol metabolism and brain Aβ levels in an Alzheimer disease mouse model. Hum Mol Genet 13: 1959–1968, 2004.
    PubMed CAS Google Scholar
  113. Van Uden E, Mallory M, Veinbergs I, Alford M, Rockenstein E, Masliah E. Increased extracellular amyloid deposition and neurodegeneration in human amyloid precursor protein transgenic mice deficient in receptor-associated protein. J Neurosci 22: 9298–9304, 2002.
    PubMed Google Scholar
  114. Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, et al. Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolished β-amyloid generation. Nat Neurosci 4: 231–232, 2001.
    PubMed CAS Google Scholar
  115. Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, et al. BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nat Neurosci 4: 233–234, 2001.
    PubMed CAS Google Scholar
  116. Harrison SM, Harper AJ, Hawkins J, Duddy G, Grau E, Pugh PL, et al. BACE1 (β-secretase) transgenic and knockout mice: identification of neurochemical deficits and behavioral changes. Mol Cell Neurosci 24: 646–655, 2003.
    PubMed CAS Google Scholar
  117. Luo Y, Bolon B, Damore MA, Fitzpatrick D, Liu H, Zhang J, et al. BACE1 (β-secretase) knockout mice do not acquire compensatory gene expression changes or develop neural lesions over time. Neurobiol Dis 14: 81–88, 2003.
    PubMed CAS Google Scholar
  118. Mohajeri MH, Saini KD, Nitsch RM. Transgenic BACE expression in mouse neurons accelerates amyloid plaque pathology. J Neural Transm 111: 413–425, 2004.
    PubMed CAS Google Scholar
  119. Friedhoff P, von Bergen M, Mandelkow EM, Mandelkow E. Structure of tau protein and assembly into paired helical filaments. Biochim Biophys Acta 1502: 122–132, 2000.
    PubMed CAS Google Scholar
  120. Morishima-Kawashima M, Ihara Y. Alzheimer’s disease: β-amyloid protein and tau. J Neurosci Res 70: 392–401, 2002.
    PubMed CAS Google Scholar
  121. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393: 702–705, 1998.
    PubMed CAS Google Scholar
  122. Gotz J, Probst A, Spillantini MG, Schafer T, Jakes R, Burki K, et al. Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO J 14: 1304–1313, 1995.
    PubMed CAS Google Scholar
  123. Gotz J, Barmettler R, Ferrari A, Goedert M, Probst A, Nitsch RM. In vivo analysis of wild-type and FTDP-17 tau transgenic mice. Ann NY Acad Sci 920: 126–133, 2000.
    PubMed CAS Google Scholar
  124. Probst A, Gotz J, Wiederhold KH, Tolnay M, Mistl C, Jaton AL, et al. Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol (Berl) 99: 469–481, 2000.
    CAS Google Scholar
  125. Spittaels K, Van den Haute C, Van Dorpe J, Bruynseels K, Vandezande K, Laenen I, et al. Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 155: 2153–2165, 1999.
    PubMed CAS Google Scholar
  126. Rouleau GA, Clark AW, Rooke K, Pramatarova A, Krizus A, Suchowersky O, et al. SOD1 mutation is associated with accumulation of neurofilaments in amyotrophic lateral sclerosis. Ann Neurol 39: 128–131, 1996.
    PubMed CAS Google Scholar
  127. Ishihara T, Zhang B, Higuchi M, Yoshiyama Y, Trojanowski JQ, Lee VM. Age-dependent induction of congophilic neurofibrillary tau inclusions in tau transgenic mice. Am J Pathol 158: 555–562, 2001.
    PubMed CAS Google Scholar
  128. Duff K, Knight H, Refolo LM, Sanders S, Yu X, Picciano M, et al. Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenes. Neurobiol Dis 7: 87–98, 2000.
    PubMed CAS Google Scholar
  129. Andorfer C, Kress Y, Espinoza M, de Silva R, Tucker KL, Barde YA, et al. Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J Neurochem 86: 582–590, 2003.
    PubMed CAS Google Scholar
  130. Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25: 402–405, 2000.
    PubMed CAS Google Scholar
  131. Arendash GW, Lewis J, Leighty RE, McGowan E, Cracchiolo JR, Hutton M, et al. Multi-metric behavioral comparison of APPsw and P301L models for Alzheimer’s disease: linkage of poorer cognitive performance to tau pathology in forebrain. Brain Res 1012: 29–41, 2004.
    PubMed CAS Google Scholar
  132. Gotz J, Chen F, Barmettler R, Nitsch RM. Tau filament formation in transgenic mice expressing P301L tau. J Biol Chem 276: 529–534, 2001.
    PubMed CAS Google Scholar
  133. Santa Cruz KS, Paulson J, Lewis J, Mariash A, Forster C, Guimaraes A, et al. Cell loss and gliosis in a transgenic mouse with regulatable P301L tau overexpression. Poster 840.25 presented at the Society for Neuroscience meeting, New Orleans, LA, 2003.
  134. Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, et al. Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 22: 9340–9351, 2002.
    PubMed CAS Google Scholar
  135. Gotz J, Chen F, van Dorpe J, Nitsch RM. Formation of neurofibrillary tangles in P3011 tau transgenic mice induced by Aβ 42 fibrils. Science 293: 1491–1495, 2001.
    PubMed CAS Google Scholar
  136. Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293: 1487–1491, 2001.
    PubMed CAS Google Scholar
  137. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39: 409–421, 2003.
    PubMed CAS Google Scholar
  138. Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24: 1063–1070, 2003.
    PubMed CAS Google Scholar
  139. Brecht WJ, Harris FM, Chang S, Tesseur I, Yu GQ, Xu Q, et al. Neuron-specific apolipoprotein e4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J Neurosci 24: 2527–2534, 2004.
    PubMed CAS Google Scholar
  140. Lucas JJ, Hernandez F, Gomez-Ramos P, Moran MA, Hen R, Avila J. Decreased nuclear β-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice. EMBO J 20: 21–19, 2001.
    Google Scholar
  141. Ahlijanian MK, Barrezueta NX, Williams RD, Jakowski A, Kowsz KP, McCarthy S, et al. Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc Nail Acad Sci USA 97: 2910–2915, 2000.
    CAS Google Scholar
  142. Noble W, Olm V, Takata K, Casey E, Mary O, Meyerson J, et al. Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 38: 555–565, 2003.
    PubMed CAS Google Scholar
  143. Kins S, Crameri A, Evans DR, Hemmings BA, Nitsch RM, Gotz J. Reduced protein phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice. J Biol Chem 276: 38193–38200, 2001.
    PubMed CAS Google Scholar
  144. Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399: 784–788, 1999.
    PubMed CAS Google Scholar
  145. Liou YC, Sun A, Ryo A, Zhou XZ, Yu ZX, Huang HK, et al. Role of the prolyl isomerase Pinl in protecting against age-dependent neurodegeneration. Nature 424: 556–561, 2003.
    PubMed CAS Google Scholar
  146. Rosen DR, Martin-Morris L, Luo LQ, White K. A Drosophila gene encoding a protein resembling the human β-amyloid protein precursor. Proc Natl Acad Sci USA 86: 2478–2482, 1989.
    PubMed CAS Google Scholar
  147. Daigle I, Li C. apl-1, a Caenorhabditis elegans gene encoding a protein related to the human β-amyloid protein precursor. Proc Natl Acad Sci USA 90: 12045–12049, 1993.
    PubMed CAS Google Scholar
  148. Gunawardena S, Goldstein LS. Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32: 389–401, 2001.
    PubMed CAS Google Scholar
  149. Link CD. Expression of human β-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci USA 92: 9368–9372, 1995.
    PubMed CAS Google Scholar
  150. Fay DS, Fluet A, Johnson CJ, Link CD. In vivo aggregation of β-amyloid peptide variants. J Neurochem 71: 1616–1625, 1998.
    PubMed CAS Google Scholar
  151. Fonte V, Kapulkin V, Taft A, Fluet A, Friedman D, Link CD. Interaction of intracellular β amyloid peptide with chaperone proteins. Proc Natl Acad Sci USA 99: 9439–9444, 2002.
    PubMed CAS Google Scholar
  152. Levitan D, Greenwald I. Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377: 351–354, 1995.
    PubMed CAS Google Scholar
  153. Boulianne GL, Livne-Bar I, Humphreys JM, Liang Y, Lin C, Rogaev E, et al. Cloning and characterization of the Drosophila presenilin homologue. Neuroreport 8: 1025–1029, 1997.
    PubMed CAS Google Scholar
  154. Li X, Greenwald I. HOP-1, a Caenorhabditis elegans presenilin, appears to be functionally redundant with SEL-12 presenilin and to facilitate LIN-12 and GLP-1 signaling. Proc Natl Acad Sci USA 94: 12204–12209, 1997.
    PubMed CAS Google Scholar
  155. Hong CS, Koo EH. Isolation and characterization of Drosophila presenilin homolog. Neuroreport 8: 665–668, 1997.
    PubMed CAS Google Scholar
  156. Chung HM, Struhl G. Nicastrin is required for Presenilin-mediated transmembrane cleavage in Drosophila. Nat Cell Biol 3: 1129–1132, 2001.
    PubMed CAS Google Scholar
  157. Goutte C, Tsunozaki M, Hale VA, Priess JR. APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos. Proc Natl Acad Sci USA 99: 775–779, 2002.
    PubMed CAS Google Scholar
  158. Francis R, McGrath G, Zhang J, Ruddy DA, Sym M, Apfeld J, et al. aph-1 and pen-2 are required for Notch pathway signaling, γ-secretase cleavage of βAPP, and presenilin protein accumulation. Dev Cell 3: 85–97, 2002.
    PubMed CAS Google Scholar
  159. Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, Hutton M, et al. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293: 711–714, 2001.
    PubMed CAS Google Scholar
  160. Jackson GR, Wiedau-Pazos M, Sang TK, Wagle N, Brown CA, Massachi S, et al. Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34: 509–519, 2002.
    PubMed CAS Google Scholar
  161. Torroja L, Chu H, Kotovsky I, White K. Neuronal overexpression of APPL, the Drosophila homologue of the amyloid precursor protein (APP), disrupts axonal transport. Curr Biol 9: 489–492, 1999.
    PubMed CAS Google Scholar
  162. Kraemer BC, Zhang B, Leverenz JB, Thomas JH, Trojanowski JQ, Schellenberg GD. Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci USA 100: 9980–9985, 2003.
    PubMed CAS Google Scholar
  163. Hall GF, Cohen MJ. Extensive dendritic sprouting induced by close axotomy of central neurons in the lamprey. Science 222: 518–521, 1983.
    PubMed CAS Google Scholar
  164. Hall GF, Lee VM, Lee G, Yao J. Staging of neurofibrillary degeneration caused by human tau overexpression in a unique cellular model of human tauopathy. Am J Pathol 158: 235–246, 2001.
    PubMed CAS Google Scholar
  165. Hall GF, Lee S, Yao J. Neurofibrillary degeneration can be arrested in an in vivo cellular model of human tauopathy by application of a compound which inhibits tau filament formation in vitro. J Mol Neurosci 19: 253–260, 2002.
    PubMed CAS Google Scholar
  166. Dovey HF, John V, Anderson JP, Chen LZ, de Saint Andrieu P, Fang LY, et al. Functional γ-secretase inhibitors reduce β-amyloid peptide levels in brain. J Neurochem 76: 173–181, 2001.
    PubMed CAS Google Scholar
  167. Lanz TA, Himes CS, Pallante G, Actams L, Yamazaki S, Amore B, et al. The γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester reduces Aβ levels in vivo in plasma and cerebrospinal fluid in young (plaque-free) and aged (plaque-bearing) Tg2576 mice. J Pharmacol Exp Ther 305: 864–871, 2003.
    PubMed CAS Google Scholar
  168. De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398: 518–522, 1999.
    PubMed Google Scholar
  169. Wong GT, Manfra D, Poulet FM, Zhang Q, Josien H, Bara T, et al. Chronic treatment with the γ-secretase inhibitor LY-411,575 inhibits β-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 279: 12876–12882, 2004.
    PubMed CAS Google Scholar
  170. Yan Q, Zhang J, Liu H, Babu-Khan S, Vassar R, Biere AL, et al. Anti-inflammatory drug therapy alters β-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci 23: 7504–7509, 2003.
    PubMed CAS Google Scholar
  171. Lleo A, Berezovska O, Herl L, Raju S, Deng A, Bacskai BJ, et al. Nonsteroidal anti-inflammatory drugs lower Aβ42 and change presenilin 1 conformation. 10:1065–1066, 2004
  172. Eriksen JL, Sagi SA, Smith TE, Weggen S, Das P, McLendon DC, et al. NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Aβ 42 in vivo. J Clin Invest 112: 440–449, 2003.
    PubMed CAS Google Scholar
  173. Citron M. β-Secretase inhibition for the treatment of Alzheimer’s disease—promise and challenge. Trends Pharmacol Sci 25: 92–97, 2004.
    PubMed CAS Google Scholar
  174. Gnjec A, Fonte JA, Atwood C, Martins RN. Transition metal chelator therapy—a potential treatment for Alzheimer’s disease? Front Biosci 7: d1016-d1023, 2002.
    PubMed CAS Google Scholar
  175. Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30: 665–676, 2001.
    PubMed CAS Google Scholar
  176. Lee JY, Cole TB, Palmiter RD, Suh SW, Koh JY. Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc Nail Acad Sci USA 99: 7705–7710, 2002.
    CAS Google Scholar
  177. Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 60: 1685–1691, 2003.
    PubMed Google Scholar
  178. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400: 173–177, 1999.
    PubMed CAS Google Scholar
  179. Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6: 916–919, 2000.
    PubMed CAS Google Scholar
  180. Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, et al. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer’s disease model. Nat Neurosci 5: 452–457, 2002.
    PubMed CAS Google Scholar
  181. Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, et al. A β peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408: 979–982, 2000.
    PubMed CAS Google Scholar
  182. Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, et al. A β peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408: 982–985, 2000.
    PubMed CAS Google Scholar
  183. D’Amore JD, Kajdasz ST, McLellan ME, Bacskai BJ, Stern EA, Hyman BT. In vivo multiphoton imaging of a transgenic mouse model of Alzheimer disease reveals marked thioflavine-S-associated alterations in neurite trajectories. J Neuropathol Exp Neurol 62: 137–145, 2003.
    PubMed Google Scholar
  184. Lombardo JA, Stern EA, McLellan ME, Kajdasz ST, Hickey GA, Bacskai BJ, et al. Amyloid-β antibody treatment leads to rapid normalization of plaque-induced neuritic alterations. J Neurosci 23: 10879–10883, 2003.
    PubMed CAS Google Scholar
  185. Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM. Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43: 321–332, 2004.
    PubMed CAS Google Scholar
  186. Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, et al. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology 61: 46–54, 2003.
    PubMed CAS Google Scholar
  187. Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nat Med 9: 448–452, 2003.
    PubMed CAS Google Scholar
  188. Ferrer I, Boada Rovira M, Sanchez Guerra ML, Rey MJ, Costa-Jussa F. Neuropathology and pathogenesis of encephalitis following amyloid-β immunization in Alzheimer’s disease. Brain Pathol 14: 11–20, 2004.
    PubMed CAS Google Scholar
  189. Hock C, Konietzko U, Streffer JR, Tracy J, Signorell A, Muller-Tillmanns B, et al. Antibodies against β-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 38: 547–554, 2003.
    PubMed CAS Google Scholar
  190. Lesne S, Docagne F, Gabriel C, Liot G, Lahiri DK, Buee L, et al. Transforming growth factor-β 1 potentiates amyloid-β generation in astrocytes and in transgenic mice. J Biol Chem 278: 18408–18418, 2003.
    PubMed CAS Google Scholar
  191. Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, et al. TGF-βl promotes microglial amyloid-β clearance and reduces plaque burden in transgenic mice. Nat Med 7: 612–618, 2001.
    PubMed CAS Google Scholar
  192. Wyss-Coray T, Masliah E, Mallory M, McConlogue L, Johnson-Wood K, Lin C, et al. Amyloidogenic role of cytokine TGF-βl in transgenic mice and in Alzheimer’s disease. Nature 389: 603–606, 1997.
    PubMed CAS Google Scholar

Download references