Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, south China | Journal of Paleontology | Cambridge Core (original) (raw)

References

Allison, P. A., and Briggs, D. E. G. 1993. Exceptional fossils record: distribution of soft-tissue preservation through the Phanerozoic. Geology, 21:527–530.2.3.CO;2>CrossRefGoogle Scholar

Aronson, R. B. 1992. Decline of the Burgess Shale fauna: ecologic or taphonomic restriction? Lethaia, 25:225–229.CrossRefGoogle Scholar

Awramik, S. M. 1992. The history and significance of stromatolites, p. 435–449. In Schidlowski, M. (ed.), Early Organic Evolution: Implications for Mineral and Energy Resources. Springer-Verlag, Berlin.CrossRefGoogle Scholar

Ayala, F. J., Rzhetsky, A., and Ayala, F. J. 1998. Origin of the metazoan phyla: molecular clocks confirm paleontological estimates. Proceedings of the National Academy of Sciences, USA, 95:606–611.CrossRefGoogle ScholarPubMed

Bengtson, S. 1994. The advent of animal skeletons, p. 412–425. In Bengtson, S. (ed.), Early Life on Earth. Columbia, New York.Google Scholar

Bengtson, S., and Yue, Z. 1997. Fossilized metazoan embryos from the earliest Cambrian. Science, 277:1645–1648.CrossRefGoogle Scholar

Berger, S., and Kaever, M. J. 1992. Dasycladales: An Illustrated Monograph of a Fascinating Algal Order. Georg Thieme Verlag, Stuttgart, 247 p.Google Scholar

Bi, Z., Wang, X., Zhu, H., Wang, Z., and Ding, F. 1988. The Sinian of southern Anhui. Professional Papers of Stratigraphy and Palaeontology, 27–60.Google Scholar

Bold, H. C., and Wynne, M. J. 1985. Introduction to the Algae. Prentice-Hall, Englewood Cliffs, New Jersey, 1–720 p.Google Scholar

Brasier, M. D., and McIlroy, D. 1998. Neonereites uniserialis from c. 600 Ma year old rocks in western Scotland and the emergence of animals. Journal of the Geological Society, London, 155:5–12.CrossRefGoogle Scholar

Bromham, L., Rambaut, A., Fortey, R., Cooper, A., and Penny, D. 1998. Testing the Cambrian Explosion hypothesis by using a molecular dating technique. Proceedings of the National Academy of Sciences, USA, 95:12386–12389.CrossRefGoogle ScholarPubMed

Butterfield, N. J. 1990. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology, 16:272–286.CrossRefGoogle Scholar

Butterfield, N. J. 1995. Secular distribution of Burgess-Shale-type preservation. Lethaia, 28:1–13.CrossRefGoogle Scholar

Butterfield, N. J. 1996. Fossil preservation in the Burgess Shale: Reply. Lethaia, 29:109–112.CrossRefGoogle Scholar

Butterfield, N. J. 2000. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26:386–404.2.0.CO;2>CrossRefGoogle Scholar

Butterfield, N. J., and Chandler, F. W. 1992. Paleoenvironmental distribution of Proterozoic microfossils, with an example from the Agu Bay Formation, Baffin Island. Palaeontology, 35:943–957.Google Scholar

Butterfield, N. J., Knoll, A. H., and Swett, K. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata, 34:1–84.Google Scholar

Chen, J. 1988. Precambrian metazoans of the Huai River drainage area (Anhui, E. China): their taphonomic and ecological evidence. Senkenbergiana Lethaea, 69:189–215.Google Scholar

Chen, J., and Erdtmann, B.-D. 1991. Lower Cambrian fossil Lagerstätte from Chengjiang, Yunnan, China: Insights for reconstructing early metazoan life, p. 57–76. In Simonetta, A. M. and Conway Morris, S. (ed.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press, Cambridge.Google Scholar

Chen, J., and Zhou, G. 1997. Biology of the Chengjiang fauna. Bulletin of the National Museum of Natural Science (Taipei), No. 10:11–105.Google Scholar

Chen, J., Zhou, G., Zhu, M. Y., and Yeh, K. Y. 1996. The Chengjiang Biota: A Unique Window of the Cambrian Explosion. National Museum of Natural History, Taichung, 1–222 p.Google Scholar

Chen, M., and Xiao, Z. 1991. Discovery of the macrofossils in the Upper Sinian Doushantuo Formation at Miaohe, eastern Yangtze Gorges. Scientia Geologica Sinica, No. 4:317–324.Google Scholar

Chen, M., and Xiao, Z. 1992. Macrofossil biota from upper Doushantuo Formation in eastern Yangtze Gorges, China. Acta Palaeontologica Sinica, 31(5):513–529.Google Scholar

Chen, M., Lu, G., and Xiao, Z. 1994a. Preliminary study on the algal macrofossils—Lantian Flora from the Lantian Formation of Upper Sinian in southern Anhui. Bulletin Institute of Geology, Academia Sinica, No. 7:252–267.Google Scholar

Chen, M., Chen, Y., and Qian, Y. 1981. Some tubular fossils from Sinian-Lower Cambrian broundary sequences, Yangtze Gorge. Bulletin, Tianjin Institute of Geology and Mineral Resources, 3:117–124.Google Scholar

Chen, M., Xiao, Z., and Yuan, X. 1993. First discovery of Beltanelloides podolicus from the upper Sinian in southern China. Scientia Geologica Sinica, 28:312–316.Google Scholar

Chen, M., Xiao, Z., and Yuan, X. 1994b. A new assemblage of megafossils—Miaohe biota from Upper Sinian Doushantuo Formation, Yangtze Gorges. Acta Palaeontologica Sinica, 33(4):391–403.Google Scholar

Chen, M., Xiao, Z., and Yuan, X. 1995. A great diversification of macroscopic algae in Neoproterozoic. Scientia Geologica Sinica (English Edition), 4:295–308.Google Scholar

Chen, X., Rowley, D. B., Rong, J.-Y., Zhang, J., Zhang, Y.-D., and Zhan, R.-B. 1997. Late Precambrian through Early Paleozoic stratigraphic and tectonic evolution of the Nanling region, Hunan Province, South China. International Geology Review, 39:469–478.Google Scholar

Collins, A. G., Lipps, J. H., and Valentine, J. W. 2000. Modern mucociliary creeping trails and the bodyplans of Neoproterozoic tracemakers. Paleobiology, 26:47–55.2.0.CO;2>CrossRefGoogle Scholar

Conway Morris, S. 1998a. The Crucible of Creation: The Burgess Shale and the Rise of Animals. Oxford University Press, Oxford, 242 p.Google Scholar

Conway Morris, S. 1998b. Early metazoan evolution: reconciling paleontology and molecular biology. American Zoologist, 38:867–877.CrossRefGoogle Scholar

Conway Morris, S., and Robison, R. A. 1988. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia. The University of Kansas Paleontological Contributions, No. 122:23–84.Google Scholar

Crimes, T. P. 1994. The period of early evolutionary failure and the dawn of evolutionary success: the record of biotic changes across the Precambrian-Cambrian boundary, p. 105–133. In Donovan, S. K. (ed.), The Palaeobiology of Trace Fossils. Wiley, New York.Google Scholar

Davidson, E. H., Peterson, K. J., and Cameron, R. A. 1995. Origin of bilaterian body plans: Evolution of developmental regulatory mechanisms. Science, 270:1319–1325.CrossRefGoogle ScholarPubMed

Ding, L., Zhang, L., Li, Y., and Dong, J. 1992. The Study of the Late Sinian–Early Cambrian Biotas from the Northern Margin of the Yangtze Platform. Scientific and Technical Documents Publishing House, Beijing, 1–135 p.Google Scholar

Ding, L., Li, Y., Hu, X., Xiao, Y., Su, C., and Huang, J. 1996. Sinian Miaohe Biota. Geological Publishing House, Beijing, 1–221 p.Google Scholar

Eckhardt, R., Schnetter, R., and Seibold, G. 1986. Nuclear behaviour during the life cycle of Derbesia (Chlorophyceae). British Phycological Journal, 21:287–295.CrossRefGoogle Scholar

Evans, D. A. D., Li, Z. X., Kirschvink, J. L., and Wingate, M. T. D. 2000. A high-quality mid-Neoproterozoic paleomagnatic pole from South China, with implications for ice ages and the breakup configuration of Rodinia. Precambrian Research, 100:313–334.CrossRefGoogle Scholar

Fedonkin, M. A. 1990. Paleoichnology of Vendian Metazoa, p. 132–137. In Sokolov, B. S. and Iwanowski, A. B. (ed.), The Vendian System, Volume 1, Paleontology. Springer-Verlag, Heidelberg.Google Scholar

Fedonkin, M. A. 1994. Vendian body fossils and trace fossils, p. 370–388. In Bengtson, S. (ed.), Early Life on Earth. Columbia University Press, New York.Google Scholar

Fortey, R. A., Briggs, D. E. G., and Wills, M. A. 1996. The Cambrian evolutionary “explosion”: Decoupling cladogenesis from morphological disparity. Biological Journal of the Linnean Society, 57:13–33.Google Scholar

Fritsch, F. E. 1965a. The Structure and Reproduction of the Algae. Volume 1. Cambridge University Press, Cambridge, 1–791 p.Google Scholar

Fritsch, F. E. 1965b. The Structure and Reproduction of the Algae. Volume 2. Cambridge University Press, Cambridge. 1–939 p.Google Scholar

Gnilovskaya, M. B. 1990. Vendotaenids—Vendian metaphytes, p. 138–147. In Sokolov, B. S. and Iwanowski, A. B. (ed.), The Vendian System, Volume 1, Paleontology. Springer-Verlag, Berlin.Google Scholar

Gnilovskaya, M. B., Istchenko, A. A., Kolesniko, C. M., Korenchuk, L. V., and Udalstov, A. P. 1988. Vendotaenids of the East European Platform. Nauka, Leningrad. 140 p. (In Russian)Google Scholar

Golub, I. N. 1979. Novaya gruppa problematichnykh mikroobrazovanij v vendskikh otlozheniyakh Orshanskoj vpadiny (Russkaya platforma). [A new group of problematic microstructures in Vendian deposits of the Orshanka Basin (Russian Platform)], p. 147–155. In Sokolov, S. B. (ed.), Paleontologiya Dokembriya i Rannego Kembriya. Nauka, Leningrad.Google Scholar

Graham, L. E., and Wilcox, L. E. 2000. Algae. Prentice Hall, Upper Saddle River, NJ, 640 p.Google Scholar

Grotzinger, J. P. 1989. Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype, p. 79–106. In Crevello, P. D., Wilson, J. L., Sarg, J. F., and Read, J. F. (ed.), Controls on Carbonate Platform and Basin Development, SEPM special publication No. 44.Google Scholar

Grotzinger, J. P., and Kasting, J. F. 1993. New constraints on Precambrian ocean composition. The Journal of Geology, 101:235–243.CrossRefGoogle ScholarPubMed

Grotzinger, J. P., and Knoll, A. H. 1999. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences, 27:313–358.CrossRefGoogle ScholarPubMed

Gu, X. 1998. Early metazoan divergence was about 830 million years ago. Journal of Molecular Evolution, 47:369–371.CrossRefGoogle ScholarPubMed

Gureev, Y. A. 1985. Vendiata—primitivnye dokembriyskie Radialia [Vendiata—primitive Precambrian Radialia]. Akademiya Nauk SSSR, Sibirskoe Otdelenie, Trudy Instituta Geologii i Geofiziki, 632:93–103.Google Scholar

Han, T.-M., and Runnegar, B. 1992. Megascopic eukaryotic algae from the 2.1 billion-year-old Negaunee Iron-Formation, Michigan. Science, 257:232–235.CrossRefGoogle ScholarPubMed

Hermann, T. N. 1990. Organic World Billion Year Ago. Nauka, Leningrad. 1–49 p.Google Scholar

Hofmann, H. 1992. Proterozoic and selected Cambrian megascopic carbonaceous films, p. 957–998. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere, a multidisciplinary study. Cambridge University Press, Cambridge.Google Scholar

Hofmann, H. 1994. Proterozoic carbonaceous compressions (“metaphytes” and “worms”), p. 342–357. In Bengtson, S. (ed.), Early Life on Earth. Columbia University Press, New York.Google Scholar

Hofmann, H., and Chen, J. 1981. Carbonaceous megafossils from the Precambrian (1800 Ma) near Jixian, northern China. Canadian Journal of Earth Sciences, 18:443–447.CrossRefGoogle Scholar

Hofmann, H., and Jackson, G. D. 1991. Shelf-facies microfossils from the Uluskan Group (Proterozoic Bylot Supergroup), Baffin Island, Canada. Journal of Paleontology, 65:361–382.CrossRefGoogle Scholar

Hofmann, H., and Jackson, G. D. 1994. Shale-facies microfossils from the Proterozoic Bylot Supergroup, Baffin Island, Canada. Paleontological Society Memoir, 37:1–35.Google Scholar

Horodyski, R. J., and Donaldson, J. A. 1980. Microfossils from the middle Proterozoic Dismal Lakes Group, Arctic Canada. Precambrian Research, 11:125–159.CrossRefGoogle Scholar

Jankauskas, T. V., Mikhailova, N. S., and Hermann, T. N. 1989. Mikrofossilii Dokembriya SSSR [Precambrian Microfossils of the USSR]. Nauka, Leningrad, 190 p.Google Scholar

Kah, L. C., and Knoll, A. H. 1996. Microbenthic distribution in Proterozoic tidal flats: environmental and taphonomical considerations. Geology, 24:79–82.2.3.CO;2>CrossRefGoogle Scholar

Keller, B. M., Menner, V. V., Stepanov, V. A., and Chumakov, N. M. 1974. New finds of fossils in the Precambrian Valday Series along the Syuzma River. Izvestia Akademii Nauk SSSR, Seriya Geologicheskaya, 12:130–134.Google Scholar

Knoll, A. H. 1992a. The early evolution of eukaryotes: a geological perspective. Science, 256:622–627.CrossRefGoogle Scholar

Knoll, A.H. 1992b. Microfossils in metasedimentary cherts of the Scotia Group, Prins Karls Forland, western Svalbard. Palaeontology, 35:751–774.Google Scholar

Knoll, A. H., and Carroll, S. B. 1999. Early animal evolution: emerging views from comparative biology and geology. Science, 284:2129–2137.CrossRefGoogle ScholarPubMed

Knoll, A. H., and Golubic, S. 1979. Anatomy and taphonomy of a Precambrian algal stromatolite. Precambrian Research, 10:115–151.CrossRefGoogle Scholar

Knoll, A. H., and Sergeev, V. N. 1995. Taphonomic and evolutionary changes across the Mesoproterozoic- Neoproterozoic transition. Neves Jahrbuch für Geologie und Paläontologie Abhandlungen, 195:289–302.CrossRefGoogle ScholarPubMed

Knoll, A. H., and Xiao, S. 1999. On the age of the Doushantuo Formation. Acta Micropalaeontologica Sinica, 16:225–236.Google Scholar

Knoll, A. H., Swett, K., and Mark, J. 1991. Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: The Draken Conglomerate Formation, Spitsbergen. Journal of Paleontology, 65:531–570.CrossRefGoogle ScholarPubMed

Kumar, S. 1995. Megafossils from the Mesoproterozoic Rohtas Formation (the Vindhyan Supergroup), Katni area, central India. Precambrian Research, 72:171–184.CrossRefGoogle Scholar

Li, Z.-X., Zhang, L., and Powell, C. M. 1995. South China in Rodinia: part of the missing link between Australia-East Antarctica and Laurentia? Geology, 23:407–410.2.3.CO;2>CrossRefGoogle Scholar

Lipps, J. H., and Rozanov, A. Y. 1996. The late Precambrian-Cambrian agglutinated fossil Platysolenites . Paleontological Journal, 30:679–687.Google Scholar

Liu, H. 1991. The Sinian System in China. Science Press, Beijing, 1–388 p.Google Scholar

Mao, J.-R., Zhao, Y.-L., and Yu, P. 1994. Noncalcareous algae of Kaili fauna in Taijiang, Guizhou. Acta Palaeontologica Sinica, 33:345–349.Google Scholar

McIlroy, D., Green, O. R., and Braiser, M. D. 1994. The world's oldest foraminiferans. Microscopy and Analysis, November 1994:13–15.Google Scholar

Moczydłowska, M., Vidal, G., and Rudavskaya, V. A. 1993. Neoproterozoic (Vendian) phytoplankton from the Siberian Platform, Yakutia. Palaeontology, 36:495–521.Google Scholar

Narbonne, G. M., and Hofmann, H. J. 1987. Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palaeontology, 30:647–676.Google Scholar

Nikoh, N., Iwabe, N., Kuma, K.-I., Ohno, M., Sugiyama, T., Watanabe, Y., Yasui, K., Zhang, S.-C., Hori, K., Shimura, Y., and Miyata, T. 1997. An estimate of divergence time of Parazoa and Eumetazoa and that of Cephalochordata and Vertebrata by aldolase and triose phosphate isomerase clocks. Journal of Molecular Evolution, 45:97–106.CrossRefGoogle ScholarPubMed

Oehler, D. Z. 1978. Microflora of the middle Proterozoic Balbirini Dolomite (McArthur Group) of Australia. Alcheringa, 2:269–309.CrossRefGoogle Scholar

Orr, P. J., Briggs, D. E. G., and Kearns, S. L. 1998. Cambrian Burgess Shale animals replicated in clay minerals. Science, 281:1173–1175.CrossRefGoogle ScholarPubMed

Peterson, K. J., Cameron, R. A., and Davidson, E. H. 2000. Bilaterian origins: Significance of new experimental observations. Developmental Biology, 219:1–17.CrossRefGoogle ScholarPubMed

Porter, S. M., and Knoll, A. H. 2000. Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology, 26:360–385.2.0.CO;2>CrossRefGoogle Scholar

Qian, M., Yuan, X., Wang, Y., and Yan, Y. 2000. New material of metaphytes from the Neoproterozoic Jinshanzhai Formation in Huaibei, North Anhui, China. Acta Palaeontologic Sinica, 39:516–520.Google Scholar

Qian, Y., and Bengtson, S. 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata, 24:1–156.Google Scholar

Qian, Y., Chen, M., and Chen, Y. 1979. Hyolithids and other small shelly fossils from the Lower Cambrian Huangshandong Formation in the eastern part of the Yangtze Gorge. Acta Palaeontologica Sinica, 18(3):207–232.Google Scholar

Satterthwait, D. F. 1976. Paleobiology and Paleoecology of Middle Cambrian Algae from Western North America. Ph.D. thesis, University of California at Los Angeles.Google Scholar

Schopf, J. W. 1968. Microflora of the Bitter Springs Formation, Late Precambrian, central Australia. Journal of Paleontology, 42:651–688.Google Scholar

Schopf, J. W., and Blacic, J. M. 1971. New microorganisms from the Bitter Springs Formation (Late Precambrian) of the north-central Amadeus Basin, Australia. Journal of Paleontology, 45:925–960.Google Scholar

Seilacher, A., Bose, P. K., and Pflueger, F. 1998. Triploblastic animals more than one billion years ago: trace fossil evidence from India. Science, 281:80–83.CrossRefGoogle Scholar

Sokolov, B. S. 1965. The most ancient Early Cambrian deposits and sabelliditids (in Russian). Abstracts, All-Union Syposium on Paleontology of Precambrian and Early Cambrian, Novosibirsk, 78–91.Google Scholar

Sokolov, B. S. 1967. Drevneyshiye pogonofory [The oldest Pogonophora]. Doklady Akademii Nauk SSSR, 177(1):201–204 (English translation page 252–255).Google Scholar

Sokolov, B. S. 1972. Vendskiy etap v istorii Zemli [The Vendian Period in Earth history]. Paleontologiya, Doklady Sovetskikh Geologov, Akademiya nauk SSSR, 7:114–124.Google Scholar

Sokolov, B. S. 1997. Essays on the Advent of the Vendian System. KMK Scientific Press, Moscow, 156 p.Google Scholar

Steiner, M. 1994. Die neoproterozoischen Megaalgen Sudchinas. Berliner geowissenschaftliche Abhandlungen (E), 15:1–146.Google Scholar

Steiner, M. 1997. Chuaria circularis Walcott 1899—“megasphaeromorph acritarch” or prokaryotic colony? Acta Universitatis Carolinae Geologica, 40:645–665.Google Scholar

Steiner, M., and Fatka, O. 1996. Lower Cambrian tubular micro- to macrofossils from the Paseky Shale of the Barrandian area (Czech Republic). Palaeontologische Zeitschrift, 70(3/4):275–299.CrossRefGoogle Scholar

Steiner, M., Erdtmann, B.-D., and Chen, J. 1992. Preliminary assessment of new Late Sinian (Late Proterzoic) large siphonous and filamentous “megaalgae” from eastern Wulingshan, north-central Hunan, China. Berliner geowissenschaftliche Abhandlungen (E), 3:305–319.Google Scholar

Sun, W. 1986. Late Precambrian pennatulids (sea pens) from the eastern Yangtze Gorge, China: Paracharnia gen. nov. Precambrian Research, 31:361–375.Google Scholar

Sun, W., Wang, G., and Zhou, B. 1986. Macroscopic worm-like body fossils from the Upper Precambrian (900–700Ma), Huainan district, Anhui, China and their stratigraphic and evolutionary significance. Precambrian Research, 31:377–403.Google Scholar

Tang, F., Yin, C., and Gao, L. 1997. A new idea of metaphyte fossils from the late Sinian Doushantuo stage at Xiuning, Anhui Province. Acta Geologica Sinica, 71:289–296.Google Scholar

Tiwari, M., and Knoll, A. H. 1994. Large acanthomorphic acritarchs from the Infrakrol Formation of the Lesser Himalaya and their stratigraphic significance. Journal of Himalayan Geology, 5:193–201.Google Scholar

Towe, K. M. 1996. Fossil preservation in the Burgess Shale. Lethaia, 29:107–108.Google Scholar

Tseng, C. K. 1983. Common Seaweeds of China. Science Press, Beijing, 316 p.Google Scholar

Valentine, J. W., Jablonski, D., and Erwin, D. H. 1999. Fossils, molecules and embryos: New perspectives on the Cambrian explosion. Development, 126:851–859.CrossRefGoogle ScholarPubMed

Vidal, G. 1989. Are late Proterozoic carbonaceous megafossils metaphytic algae or bacteria? Lethaia, 22:375–379.CrossRefGoogle Scholar

Vidal, G. 1990. Giant acanthomorph acritarchs from the upper Proterozoic in southern Norway. Palaeontology, 33:287–298.Google Scholar

Walcott, C.D. 1919. Cambrian Geology and Paleontology IV: Middle Cambrian algae. Smithsonian Miscellaneous Collections, 67:217–260.Google Scholar

Walter, M. R., Du, R., and Horodyski, R. J. 1990. Coiled carbonaceous megafossils from the middle Proterozoic of Jixian (Tianjin) and Montana. American Journal of Science, 290-A:133–148.Google Scholar

Wang, D. Y.-C., Kumar, S., and Hedges, S. B. 1999. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proceedings of the Royal Society, Biological Sciences, 266:163–171.CrossRefGoogle ScholarPubMed

Wang, X., Erdtmann, B.-D., Chen, X., and Mao, X. 1998. Integrated sequence-, bio- and chemo-stratigraphy of the terminal Proterozoic to lowermost Cambrian “black rock series” from central South China. Episodes, 21:178–189.Google Scholar

Werner, B. 1966. Stephanoscyphus (Scyphozoa, Coronatae) und seine direkte Abstammung von den fossilen Conulata. Helgolander wissenschaftliche Meeresuntersuchungen, 13:317–347.CrossRefGoogle Scholar

Wheeler, A. E., and Page, J. Z. 1974. The ultrastructure or Derbesia tenuissima (De Notaris) Crouan. I. Organization of the gametophyte protoplast, gametangium, and gametangial pore. Journal of Phycology, 10:336–352.Google Scholar

Woods, K., Knoll, A. H., and German, T. 1998. Xanthophyte algae from the Mesoproterozoic/Neoproterozoic transition: confirmation and evolutionary implications. Geological Society of America, Abstracts with Programs, 30:A232.Google Scholar

Wray, G. A., Levinton, J. S., and Shapiro, L. H. 1996. Molecular evidence for deep Precambrian divergences among metazoan phyla. Science, 274:568–573.CrossRefGoogle Scholar

Xiao, S., and Knoll, A. H. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology, 74:767–788.2.0.CO;2>CrossRefGoogle Scholar

Xiao, S., Knoll, A. H., and Yuan, X. 1998a. Morphological reconstruction of Miaohephyton bifurcation, a possible brown alga from the Doushantuo Formation (Neoproterozoic), South China, and its implications for stramenopile evolution. Journal of Paleontology, 72:1072–1086.CrossRefGoogle Scholar

Xiao, S., Zhang, Y., and Knoll, A. H. 1998b. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391:553–558.CrossRefGoogle Scholar

Xue, Y., Tang, T., Yu, C., and Zhou, C. 1995. Large Spheroidal Chlorophyta fossils from the Doushantuo Formation phosphoric sequence (late Sinian), central Guizhou, South China. Acta Palaeontologica Sinica, 34(6):688–706.Google Scholar

Yan, Y., and Liu, Z. 1997. Tuanshanzian macroscopic algae of 1700 Ma b. p. from Changcheng System of Jixian, China. Acta Palaeontologica Sinica, 36:18–41.Google Scholar

Yin, L. 1987. Microbiotas of latest Precambrian sequences in China, p. 415–494. In A. S. Nanjing Institute of Geology and Palaeontology (ed.), Stratigraphy and Palaeontology of Systemic Boundaries in China: Precambrian–Cambrian Boundary (1). Nanjing University Press, Nanjing.Google Scholar

Yuan, X., and Hofmann, H. J. 1998. New microfossils from the Neoproterozoic (Sinian) Doushantuo Formation, Weng'an, Guizhou Province, southwestern China. Alcheringa, 22:189–222.Google Scholar

Yuan, X., Li, J., and Cao, R. 1999. A diverse metaphyte assemblage from the Neoproterozoic black shales of South China. Lethaia, 32:143–155.Google Scholar

Yuan, X., Li, J., and Chen, M. 1995. Development and their fossil records of metaphytes from late Precambrian. Acta Palaeontologica Sinica, 34(1):90–102.Google Scholar

Yue, Z., and Bengtson, S. 1999. Embryonic and post-embryonic development of the Early Cambrian cnidarian Olivooides . Lethaia, 32:181–195.Google Scholar

Zang, W., and Walter, M. R. 1992. Late Proterozoic and Cambrian microfossils and biostratigraphy, Amadeus Basin, central Australia. The Association of Australasia Palaeontologists, Memoir 12:1–132.Google Scholar

Zhang, Y. 1989. Multicellular thallophytes with differentiated tissues from late Proterozoic phosphate rocks of South China. Lethaia, 22:113–132.Google Scholar

Zhang, Y., and Yuan, X. 1992. New data on multicellular thallophytes and fragments of cellular tissues from late Proterozoic phosphate rocks, South China. Lethaia, 25:1–18.Google Scholar

Zhang, Y., Yin, L., Xiao, S., and Knoll, A. H. 1998. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China. The Paleontological Society, Memoir, 50:1–52.Google Scholar

Zhang, Z. 1985. Coccoid microfossils from the Doushantuo Formation (Late Sinian) of South China. Precambrian Research, 28:163–173.CrossRefGoogle Scholar

Zhao, Z., Xing, Y., Ma, G., and Chen, Y. 1985. Biostratigraphy of the Yangtze Gorge Area, (1) Sinian. Geological Publishing House, Beijing, 1–143 p.Google Scholar

Zhao, Z., Xing, Y., Ding, Q., Liu, G., Zhao, Y., Zhang, S., Meng, X., Yin, C., Ning, B., and Han, P. 1988. The Sinian System of Hubei. China University of Geosciences Press, Wuhan, 1–205 p.Google Scholar

Zhu, S., and Chen, H. 1995. Megascopic multicellular organisms from the 1700-million-year- old Tuanshanzi Formation in the Jixian area, North China. Science, 270:620–622.Google Scholar

Zhu, W., and Chen, M. 1984. On the discovery of macrofossil algae from the late Sinian in the eastern Yangtze Gorges, south China. Acta Botanica Sinica, 26(5):558–560.Google Scholar