Siwaqaite, Ca6Al2(CrO4)3(OH)12·26H2O, a new mineral of the ettringite group from the pyrometamorphic Daba-Siwaqa complex, Jordan (original) (raw)

Acknowledgments

H.K. acknowledges help from V. Kahlenberg, T. Gstir, and A. Pauluhn during the synchrotron experiments. The authors thank F. Bosi and anonymous reviewers for their careful revisions that improved an early version of the manuscript.

  1. Funding
    This work was supported by the National Sciences Centre (NCN) of Poland, grant no. 2016/23/N/ST10/00142 (R.J.) and OeAD, CEEPUS CIII-RO-0038, ICM-2018-12254 (R.J.). The research has also received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 730872, project CALIPSOplus.

References cited

Abdul-Samad, F.A., Thomas, J.H., Williams, P.A., and Symes, R.F. (1982) Chemistry of formation of lanarkite, Pb2OSO4. Mineralogical Magazine, 46, 499–501.10.1180/minmag.1982.046.341.16Search in Google Scholar

Abed, A.M., Arouri, K.R., and Boreham, C.J. (2005) Source rock potential of the phosphorite–bituminous chalk–marl sequence in Jordan. Marine and Petroleum Geology, 22, 413–425.10.1016/j.marpetgeo.2004.12.004Search in Google Scholar

Abzalov, M.Z., Heyden, A., van der, Saymeh, A., and Abuqudaira, M. (2015) Geology and metallogeny of Jordanian uranium deposits. Applied Earth Science, 124, 63–77.10.1179/1743275815Y.0000000009Search in Google Scholar

Alia, J.M., Edwards, H.G.M., and Garcia-Navarro, F.J. (1999) FT-Raman and powder XRD analysis of the Ba(SO4)x(CrO4)1–x solid solution. Talanta, 50, 391–400.10.1016/S0039-9140(99)00127-7Search in Google Scholar

Alqudah, M., Hussein, M.A., Boorn, S. van den, Podlaha, O.G., and Mutterlose, J. (2015) Biostratigraphy and depositional setting of Maastrichtian–Eocene oil shales from Jordan. Marine and Petroleum Geology, 60, 87–104.10.1016/j.marpetgeo.2014.07.025Search in Google Scholar

Bae, S., Hikaru, F., Kanematsu, M., Yoshizawa, C., Noguchi, T., Yu, Y., and Ha, J. (2018) Removal of hexavalent chromium in Portland cement using ground granulated blast-furnace slag powder. Materials, 11, 11.10.3390/ma11010011Search in Google Scholar

Bentor, Y.K., Gross, S., and Heller, L. (1963) Some unusual minerals from the “Mottled Zone” complex, Israel. American Mineralogist, 48, 924–930.Search in Google Scholar

Berliner, R. (1998) The structure of ettringite, pp. 127–141. Presented at the Material Science of Concrete Special Volume, The Sidney Diamond Symposium, American Ceramic Society.Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., and Krivovichev, S.V. (2014) Transjordanite, IMA 2013-106. CNMNC Newsletter. Mineralogical Magazine, 78, 167.Search in Google Scholar

Brown, I.D., and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244–247.10.1107/S0108768185002063Search in Google Scholar

Brown, P., and Hooton, R.D. (2002) Ettringite and thaumasite formation in laboratory concretes prepared using sulfate-resisting cements. Cement and Concrete Composites, 24, 361–370.10.1016/S0958-9465(01)00088-9Search in Google Scholar

Burg, A., Starinsky, A., Bartov, Y., and Kolodny, Y. (1991) Geology of the Hatrurim Formation (“Mottled Zone”) in the Hatrurim basin. Israel Journal of Earth Sciences, 40, 107–124.Search in Google Scholar

Chrysochoou, M., and Dermatas, D. (2006) Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: Literature review and experimental study. Journal of Hazardous Materials, 136, 20–33.10.1016/j.jhazmat.2005.11.008Search in Google Scholar PubMed

Chukanov, N.V., Britvin, S.N., Van, K.V., Möckel, S., and Zadov, A.E. (2012) Kottenheimite, Ca3Si(OH)6(SO4)2·12H2O, a new member of the ettringite group from the Eifel are, Germany. The Canadian Mineralogist, 50, 55–63.10.3749/canmin.50.1.55Search in Google Scholar

Chukanov, N.V., Kasatkin, A.V., Zubkova, N.V., Britvin, S.N., Pautov, L.A., Pekov, I.V., Varlamov, D.A., Bychkova, Ya.V., Loskutov, A.B., and Novgorodova, E.A. (2016) Tatarinovite Ca3Al(SO4)[B(OH)4](OH)6·12H2O, a new ettringite-group mineral from the Bazhenovskoe deposit, Middle Urals, Russia, and its crystal structure. Geology of Ore Deposits, 58, 653–665.10.1134/S1075701516080080Search in Google Scholar

Cody, A.M., Lee, H., Cody, R.D., and Spry, P.G. (2004) The effects of chemical environment on the nucleation, growth, and stability of ettringite [Ca3Al(OH)6]2(SO4)3·26H2O. Cement and Concrete Research, 34, 869–881.10.1016/j.cemconres.2003.10.023Search in Google Scholar

Drebushchak, V.A., Seryotkin, Y.V., Kokh, S.N., and Sokol, E.V. (2013) Natural specimen of triple solid solution ettringite–thaumasite–chromate-ettringite. Journal of Thermal Analysis and Calorimetry, 114, 777–783.10.1007/s10973-013-2989-3Search in Google Scholar

Dunn, P.J., Peacor, D.R., Leavens, P.B., and Baum, J.L. (1983) Charlesite, a new mineral of the ettringite group, from Franklin, New Jersey. American Mineralogist, 68, 1033–1037.Search in Google Scholar

Effenberger, H., Kirfel, A., Will, G., and Zobetz, E. (1983) A further refinement of the crystal structure of thaumasite, Ca3Si(OH)6CO3SO4·12H2O. Neues Jahrbuch für Mineralogie, Monatshefte, 60–68.Search in Google Scholar

Fleurance, S., Cuney, M., Malartre, F., and Reyx, J. (2013) Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa Group, central Jordan. Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 201–219.10.1016/j.palaeo.2012.10.020Search in Google Scholar

Frost, R.L. (2004) Raman microscopy of selected chromate minerals. Journal of Raman Spectroscopy, 35, 153–158.10.1002/jrs.1121Search in Google Scholar

Galuskin, E.V., Gfeller, F., Armbruster, T., Galuskina, I.O., Vapnik, Y., Murashko, M., Włodyka, R., and Dzierżanowski, P. (2015) New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part I. Nabimusaite, KCa12(SiO4)4(SO4)2O2F, from larnite rocks of Jabel Harmun, Palestinian Autonomy, Israel. Mineralogical Magazine, 79, 1061–1072.10.1180/minmag.2015.079.5.03Search in Google Scholar

Galuskin, E.V., Galuskina, I.O., Gfeller, F., Krüger, B., Kusz, J., Vapnik, Y., Dulski, M., and Dzierżanowski, P. (2016) Silicocarnotite, Ca5[(SiO4)(PO4)](PO4), a new “old” mineral from the Negev Desert, Israel, and the ternesite–silicocarnotite solid solution: indicators of high-temperature alteration of pyrometamorphic rocks of the Hatrurim Complex, Southern Levant. European Journal of Mineralogy, 105–123.10.1127/ejm/2015/0027-2494Search in Google Scholar

Galuskina, I.O., Vapnik, Y., Lazic, B., Armbruster, T., Murashko, M., and Galuskin, E.V. (2014) Harmunite CaFe2O4: A new mineral from the Jabel Harmun, West Bank, Palestinian Autonomy, Israel. American Mineralogist, 99, 965–975.10.2138/am.2014.4563Search in Google Scholar

Galuskina, I.O., Krüger, B., Galuskin, E.V., Vapnik, Ye., and Murashko, M.N. (2019) Khurayyimite, IMA 2018-140. CNMNC Newsletter No. 48. European Journal of Mineralogy, 401.Search in Google Scholar

Gatta, G.D., McIntyre, G.J., Swanson, J.G., and Jacobsen, S.D. (2012) Minerals in cement chemistry: A single-crystal neutron diffraction and Raman spectroscopic study of thaumasite, Ca3Si(OH)6(CO3)(SO4)·12H2O. American Mineralogist, 97, 1060–1069.10.2138/am.2012.4058Search in Google Scholar

Gatta, G.D., Hålenius, U., Bosi, F., Cañadillas-Delgado, L., and Fernandez-Diaz, M.T. (2019) Minerals in cement chemistry: A single-crystal neutron diffraction study of ettringite, Ca6Al2(SO4)3(OH)12·27H2O. American Mineralogist, 104, 73–78.10.2138/am-2019-6783Search in Google Scholar

Geller, Y.I., Burg, A., Halicz, L., and Kolodny, Y. (2012) System closure during the combustion metamorphic “Mottled Zone” event, Israel. Chemical Geology, 334, 25–36.10.1016/j.chemgeo.2012.09.029Search in Google Scholar

Gougar, M.L.D., Scheetz, B.E., and Roy, D.M. (1996) Ettringite and C-S-H Portland cement phases for waste ion immobilization: A review. Waste Management, 16, 295–303.10.1016/S0956-053X(96)00072-4Search in Google Scholar

Granger, M.M., and Protas, J. (1969) Détermination et étude de la structure cristalline de la jourvaskite Ca3MnIV(SO4)(CO3)(OH)6·12H2O. Acta Crystallographica, B25, 1943–1951 (in French).10.1107/S0567740869005000Search in Google Scholar

Grapes, R. (2010) Pyrometamorphism, 2nd ed. Springer-Verlag.10.1007/978-3-642-15588-8Search in Google Scholar

Gross, S. (1977) The Mineralogy of the Hatrurim Formation, Israel, 80 p. Geological Survey of Israel.Search in Google Scholar

Gross, S. (1980) Bentorite: a new mineral from the Hatrurim area, west of the Dead Sea, Israel. Israel Journal of Earth Sciences, 29, 81–84.Search in Google Scholar

Guo, B., Sasaki, K., and Hirajima, T. (2017) Structural transformation of selenate ettringite: a hint for exfoliation chemistry. RSC Advances, 7, 42407–42415.10.1039/C7RA08765ASearch in Google Scholar

Hakimi, M.H., Abdullah, W.H., Alqudah, M., Makeen, Y.M., and Mustapha, K.A. (2016) Organic geochemical and petrographic characteristics of the oil shales in the Lajjun area, Central Jordan: Origin of organic matter input and preservation conditions. Fuel, 181, 34–45.10.1016/j.fuel.2016.04.070Search in Google Scholar

Hall, C., Barnes, P., Billimore, A.D., Jupe, A.C., and Turrillas, X. (1996) Thermal decomposition of ettringite Ca6[Al(OH)6]2(SO4)3·26H2O. Journal of the Chemical Society, Faraday Transactions, 92, 2125–2129.10.1039/FT9969202125Search in Google Scholar

Hassett, D.J., McCarthy, G.J., Kumarathasan, P., and Pflughoeft-Hassett, D. (1990) Synthesis and characterization of selenate and sulfate-selenate ettringite structure phases. Materials Research Bulletin, 25, 1347–1354.10.1016/0025-5408(90)90216-OSearch in Google Scholar

Hauff, P.L., Foord, E.E., and Rosenblum, S. (1983) Hashemite, Ba(Cr,S)O4, a new mineral from Jordan. American Mineralogist, 68, 1223–1225.Search in Google Scholar

Hill, R.J. (1977) A further refinement of the barite structure. Canadian Mineralogist, 15, 522–526.Search in Google Scholar

Irwin, R.J., Mouwerik, M.V.N., Stevens, L., Seese, M.D., and Basham, W. (1971) Environmental contaminants encyclopedia chromium(VI) (hexavalent chromium) entry. National Park Service Water Resources Divisions, Fort Collins, Colorado.Search in Google Scholar

Jallad, K.N., Santhanam, M., and Cohen, M.D. (2003) Stability and reactivity of thaumasite at different pH levels. Cement and Concrete Research, 33, 433–437.10.1016/S0008-8846(02)00971-7Search in Google Scholar

Jiménez, A., and Prieto, M. (2015) Thermal stability of ettringite exposed to atmosphere: Implications for the uptake of harmful ions by cement. Environmental Science & Technology, 49, 7957–7964.10.1021/acs.est.5b00536Search in Google Scholar PubMed

Juroszek, R., Krüger, B., and Galuskina, I.O. (2017) Structural reinvestigation of bentorite. In Mitteilungen der Österreichischen Mineralogischen Gesellschaft Vol. 163, 49. Presented at the MinPet 2017, Innsbruck, Austria.Search in Google Scholar

Juroszek, R., Krüger, B., Banasik, K., Vapnik, Y., and Galuskina, I. (2018) Raman spectroscopy and structural study of baryte-hashemite solid solution from pyrometamorphic rocks of the Hatrurim Complex, Israel. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 205, 582–592.10.1016/j.saa.2018.07.079Search in Google Scholar PubMed

Kampf, A.R., Mills, S.J., Housley, R.M., Rumsey, M.S., and Spratt, J. (2012) Lead-tellurium oxysalts from Otto Mountain near Baker, California: VII. Chromschieffelinite, Pb10Te6O20(OH)14(CrO4)(H2O)5, the chromate analog of schieffelinite. American Mineralogist, 97, 212–219.10.2138/am.2011.3909Search in Google Scholar

Khoury, H.N. (2015) Uranium minerals of central Jordan. Applied Earth Science, 124, 104–128.10.1179/1743275815Y.0000000005Search in Google Scholar

Khoury, H.N., Salameh, E.M., and Clark, I.D. (2014) Mineralogy and origin of surficial uranium deposits hosted in travertine and calcrete from central Jordan. Applied Geochemistry, 43, 49–65.10.1016/j.apgeochem.2014.02.005Search in Google Scholar

Khoury, H.N., Sokol, E.V., and Clark, I.D. (2015) Calcium uranium oxide minerals from Central Jordan: assemblages, chemistry, and alteration products. Canadian Mineralogist, 53, 61–82.10.3749/canmin.1400071Search in Google Scholar

Khoury, H.N., Kokh, S.N., Sokol, E.V., Likhacheva, A.Yu., Seryotkin, Y.V., and Belogub, E.V. (2016a) Ba and Sr mineralization of fossil fish bones from metamorphosed Belqa group sediments, Central Jordan: an integrated methodology. Arabian Journal of Geosciences, 9, 461.10.1007/s12517-016-2503-xSearch in Google Scholar

Khoury, H.N., Sokol, E.V., Kokh, S.N., Seryotkin, Y.V., Kozmenko, O.A., Goryainov, S.V., and Clark, I.D. (2016b) Intermediate members of the lime-monteponite solid solutions (Ca1–xCdxO, x = 0.36–0.55): Discovery in natural occurrence. American Mineralogist, 101, 146–160.10.2138/am-2016-5361Search in Google Scholar

Khoury, H.N., Sokol, E.V., Kokh, S.N., Seryotkin, Y.V., Nigmatulina, E.N., Goryainov, S.V., Belogub, E.V., and Clark, I.D. (2016c) Tululite, Ca14(Fe3+,Al) (Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan. Mineralogy and Petrology, 110, 125–140.10.1007/s00710-015-0413-3Search in Google Scholar

Kolodny, Y., and Gross, S. (1974) Thermal metamorphism by combustion of organic matter: Isotopic and petrological evidence. The Journal of Geology, 82, 489–506.10.1086/627995Search in Google Scholar

Kolodny, Y., Burg, A., Geller, Y.I., Halicz, L., and Zakon, Y. (2014) Veins in the combusted metamorphic rocks, Israel; Weathering or a retrograde event? Chemical Geology, 385, 140–155.10.1016/j.chemgeo.2014.07.006Search in Google Scholar

Kowalski, M., Kozak, A., and Staroń, A. (2010) Próby usuwania chromu (VI) ze ścieków przemysłowych na zasadzie tworzenia się etryngitu. Czasopismo Techniczne. Chemia, 107, 141–149 (in Polish).Search in Google Scholar

Kraus, W., and Nolze, G. (1996) Powder Cell—a program for the representation and manipulation of crystal structures and calculation of the resulting X‑ray powder patterns. Journal of Applied Crystallography, 29, 301–303.10.1107/S0021889895014920Search in Google Scholar

Kumarathasan, P., McCarthy, G.J., Hassett, D.J., and Pflughoeft-Hassett, D.F. (1989) Oxyanion substituted ettringites: synthesis and characterization; and their potential role in immobilization of As, B, Cr, Se and V. MRS Online Proceedings Library Archive, 178.10.1557/PROC-178-83Search in Google Scholar

Leisinger, S.M., Lothenbach, B., Le Saout, G., Kägi, R., Wehrli, B., and Johnson, C.A. (2010) Solid solutions between CrO4- and SO4-ettringite Ca6(Al(OH)6)2[(CrO4)x (SO4)(1–x)]3·26 H2O. Environmental Science & Technology, 44, 8983–8988.10.1021/es100554vSearch in Google Scholar PubMed

Liu, C., Hystad, G., Golden, J.J., Hummer, D.R., Downs, R.T., Morrison, S.M., Ralph, J.P., and Hazen, R.M. (2017) Chromium mineral ecology. American Mineralogist, 102, 612–619.10.2138/am-2017-5900Search in Google Scholar

Malinko, S., Chukanov, N., Dubinchuk, V., Zadov, A., and Koporulina, E. (2001) Buryatite, Ca3 (Si,Fe3+,Al)[SO4](OH)5O·12H2O, a new mineral. Zapiski VMO (Proceedings of the Russian Mineralogical Society), 130, 72–78 (in Russian).Search in Google Scholar

Mandarino, J.A. (1981) The Gladstone-Dale relationship. IV. The compatibility concept and its application. Canadian Mineralogist, 19, 441–450.Search in Google Scholar

Matschei, T., and Glasser, F.P. (2015) Thermal stability of thaumasite. Materials and Structures, 48, 2277–2289.10.1617/s11527-014-0309-4Search in Google Scholar

Matthews, A., and Gross, S. (1980) Petrological Evolution of the “Mottled Zone” (Hatrurim) Metamorphic Complex of Israel. Israel Journal of Earth Sciences, 29, 93–106.Search in Google Scholar

McDonald, A., Petersen, O.V., Gault, R., Johnsen, O., Niedermayr, G., and Brandstätter, F. (2001) Micheelsenite,(Ca,Y)3Al(PO3OH,CO3)(CO3)(OH)6·12H2O, a new mineral from Mont Saint-Hilaire, Quebec, Canada and the Nanna pegmatite, Narsaarsuup Qaava, South Greenland.Neues Jahrbuch für Mineralogie, 337–351.Search in Google Scholar

Merlino, S., and Orlandi, P. (2001) Carraraite and zaccagnaite, two new minerals from the Carrara marble quarries: their chemical compositions, physical properties, and structural features. American Mineralogist, 86, 1293–1301.10.2138/am-2001-1017Search in Google Scholar

Moore, A.E., and Taylor, H.F.W. (1970) Crystal structure of ettringite. Acta Crystallographica, B26, 386–393.10.1107/S0567740870002443Search in Google Scholar

Möschner, G., Lothenbach, B., Winnefeld, F., Ulrich, A., Figi, R., and Kretzschmar, R. (2009) Solid solution between Al-ettringite and Fe-ettringite (Ca6[Al1–xFex (OH)6]2(SO4)3·26H2O). Cement and Concrete Research, 39, 482–489.10.1016/j.cemconres.2009.03.001Search in Google Scholar

Motzer, W.E., and Enginners, T. (2004) Chemistry, geochemistry, and geology of chromium and chromium compounds. In Chromium(VI) Handbook. CRC Press.10.1201/9780203487969.ch2Search in Google Scholar

Murashko, M.N., Vapnik, Ye., Polekhovsky, Y.P., Shilovskikh, V.V., Zaitsev, A.M., Vereshchagin, O.S., and Britvin, S.N. (2019) Nickolayite, IMA 2018-126. CNMNC Newsletter No. 47. Mineralogical Magazine, 146.Search in Google Scholar

Myneni, S.C.B., Traina, S.J., Logan, T.J., and Waychunas, G.A. (1997) Oxyanion behavior in alkaline environments: Sorption and desorption of arsenate in ettringite. Environmental Science & Technology, 31, 1761–1768.10.1021/es9607594Search in Google Scholar

Nishio-Hamane, D., Ohnishi, M., Momma, K., Shimobayashi, N., Miyawaki, R., Minakawa, T., and Inaba, S. (2015) Imayoshiite, Ca3Al(CO3)[B(OH)4] (OH)6·12H2O, a new mineral of the ettringite group from Ise City, Mie Prefecture, Japan. Mineralogical Magazine, 79, 413–423.10.1180/minmag.2015.079.2.18Search in Google Scholar

Novikov, I., Vapnik, Y., and Safonova, I. (2013) Mud volcano origin of the Mottled Zone, South Levant. Geoscience Frontiers, 4, 597–619.10.1016/j.gsf.2013.02.005Search in Google Scholar

Peacor, D.R., Dunn, P.J., and Duggan, M. (1983) Sturmanite, a ferric iron, boron analogue of ettringite. Canadian Mineralogist, 21, 705–709.Search in Google Scholar

Pekov, I.V., Chukanov, N.V., Britvin, S.N., Kabalov, Y.K., Göttlicher, J., Yapaskurt, V.O., Zadov, A.E., Krivovichev, S.V., Schüller, W., and Ternes, B. (2012) The sulfite anion in ettringite-group minerals: a new mineral species hielscherite, Ca3Si(OH)6(SO4)(SO3)·11H2O, and the thaumasite–hielscherite solid-solution series. Mineralogical Magazine, 76, 1133–1152.10.1180/minmag.2012.076.5.06Search in Google Scholar

Perkins, R.B. (2000) The solubility and thermodynamic properties of ettringite, its chromium analogs, and calcium aluminum monochromate. Portland State University.Search in Google Scholar

Perkins, R.B., and Palmer, C.D. (1999) Solubility of ettringite (Ca6[Al(OH)6]2 (SO4)3·26H2O) at 5–75°C. Geochimica et Cosmochimica Acta, 63, 1969–1980.10.1016/S0016-7037(99)00078-2Search in Google Scholar

Perkins, R.B., and Palmer, C.D. (2000) Solubility of Ca6[Al(OH)6]2(CrO4)3·26H2O, the chromate analog of ettringite; 5–75°C. Applied Geochemistry, 15, 1203–1218.10.1016/S0883-2927(99)00109-2Search in Google Scholar

Pöllmann, H., Auer, St., Kuzel, H.-J., and Wenda, R. (1993) Solid solution of ettringites: Part II: Incorporation of in 3CaO·Al2O3·3CaSO4·32H2O. Cement and Concrete Research, 23, 422–430.10.1016/0008-8846(93)90107-KSearch in Google Scholar

Povarennykh, A.S. (1978) The use of infrared spectra for the determination of minerals. American Mineralogist, 63, 956–959.Search in Google Scholar

Powell, J.H., and Moh’d, B.K. (2011) Evolution of Cretaceous to Eocene alluvial and carbonate platform sequences in central and south Jordan. GeoArabia—Middle East Petroleum Geosciences, 16, 29–82.10.2113/geoarabia160429Search in Google Scholar

Pushcharovsky, D.Y., Lebedeva, Y.S., Zubkova, N.V., Pasero, M., Bellezza, M., Merlino, S., and Chukanov, N.V. (2004) The crystal structure of sturmanite. Canadian Mineralogist, 42, 723–729.10.2113/gscanmin.42.3.723Search in Google Scholar

Quareni, S., and de Pieri, R. (1965) A three-dimensional refinement of the structure of crocoite, PbCrO4. Acta Crystallographica, 19, 287–289.10.1107/S0365110X65003304Search in Google Scholar

Renaudin, G., Segni, R., Mentel, D., Nedelec, J.-M., Leroux, F., and Taviot-Gueho, C. (2007) A Raman study of the sulfated cement hydrates: Ettringite and monosulfoaluminate. Journal of Advanced Concrete Technology, 5, 299–312.10.3151/jact.5.299Search in Google Scholar

Renaudin, G., Filinchuk, Y., Neubauer, J., and Goetz-Neunhoeffer, F. (2010) A comparative structural study of wet and dried ettringite. Cement and Concrete Research, 40, 370–375.10.1016/j.cemconres.2009.11.002Search in Google Scholar

Rodríguez-Carvajal, J. (2010) Bond_str (version May-2010). A program for calculating distances and angles in crystal structure. LLB, CEA-CNRS, France. http://www.ill.eu/sites/fullprof/Search in Google Scholar

Scholtzová, E., Kucková, L., Kožíšek, J., and Tunega, D. (2015) Structural and spectroscopic characterization of ettringite mineral–combined DFT and experimental study. Journal of Molecular Structure, 1100, 215–224.10.1016/j.molstruc.2015.06.075Search in Google Scholar

Seryotkin, Y.V., Sokol, E.V., Kokh, S.N., and Murashko, M.N. (2017) Natural Cr3+-rich ettringite: occurrence, properties, and crystal structure. Physics and Chemistry of Minerals, 1–14.10.1007/s00269-017-0917-ySearch in Google Scholar

Seryotkin, Y.V., Sokol, E.V., Kokh, S.N., and Sharygin, V.V. (2019) Natural bentorite-Cr3+ derivate of ettringite: determination of crystal structure. Physics and Chemistry of Minerals, 46, 553–570.10.1007/s00269-019-01022-4Search in Google Scholar

Sheldrick, G.M. (2015) SHELXL-2014/7. Program for the Refinement of Crystal Structures. Acta Crystallographica, C71, 9–18.Search in Google Scholar

Singh, R., Dong, H., Liu, D., Zhao, L., Marts, A.R., Farquhar, E., Tierney, D.L., Almquist, C.B., and Briggs, B.R. (2015) Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus. Geochimica et Cosmochimica Acta, 148, 442–456.10.1016/j.gca.2014.10.012Search in Google Scholar PubMed PubMed Central

Sokol, E.V., Novikov, I.S., Vapnik, Ye., and Sharygin, V.V. (2007) Gas fire from mud volcanoes as a trigger for the appearance of high-temperature pyrometamorphic rocks of the Hatrurim Formation (Dead Sea area). Doklady Earth Sciences, 413, 474–480.10.1134/S1028334X07030348Search in Google Scholar

Sokol, E., Novikov, I., Zateeva, S., Vapnik, Ye., Shagam, R., and Kozmenko, O. (2010) Combustion metamorphism in the Nabi Musa dome: new implications for a mud volcanic origin of the Mottled Zone, Dead Sea area. Basin Research, 22, 414–438.10.1111/j.1365-2117.2010.00462.xSearch in Google Scholar

Sokol, E.V., Gaskova, O.L., Kokh, S.N., Kozmenko, O.A., Seryotkin, Y.V., Vapnik, Y., and Murashko, M.N. (2011) Chromatite and its Cr3+- and Cr6+-bearing precursor minerals from the Nabi Musa Mottled Zone complex, Judean Desert. American Mineralogist, 96, 659–674.10.2138/am.2011.3487Search in Google Scholar

Sokol, E.V., Kozmenko, O.A., Khoury, H.N., Kokh, S.N., Novikova, S.A., Nefedov, A.A., Sokol, I.A., and Zaikin, P. (2017) Calcareous sediments of the Muwa Archalkqq Marl Formation, Jordan: Mineralogical and geochemical evidences for Zn and Cd enrichment. Gondwana Research, 46, 204–226.10.1016/j.gr.2017.03.008Search in Google Scholar

Techer, I., Khoury, H.N., Salameh, E., Rassineux, F., Claude, C., Clauer, N., Pagel, M., Lancelot, J., Hamelin, B., and Jacquot, E. (2006) Propagation of high-alkaline fluids in an argillaceous formation: Case study of the Khushaym Matruk natural analogue (Central Jordan). Journal of Geochemical Exploration, 90, 53–67.10.1016/j.gexplo.2005.09.004Search in Google Scholar

Terai, T., Mikuni, A., Komatsu, R., and Ikeda, K. (2006) Synthesis of Cr(VI)-ettringite in portlandite suspensions as a function of pH. Journal of the Ceramic Society of Japan, 114, 299–302.10.2109/jcersj.114.299Search in Google Scholar

Teramoto, H., and Koie, S. (1976) Early hydration of a superhigh-early-strength Portland cement containing chromium. Journal of the American Ceramic Society, 59, 522–525.10.1111/j.1151-2916.1976.tb09423.xSearch in Google Scholar

Thiéry, V., Trincal, V., and Davy, C.A. (2017) The elusive ettringite under the high-vacuum SEM—a reflection based on natural samples, the use of Monte Carlo modelling of EDS analyses and an extension to the ettringite group minerals. Journal of Microscopy, 268, 84–93.10.1111/jmi.12589Search in Google Scholar PubMed

Vapnik, Y., Sharygin, V.V., Sokol, E.V., and Shagam, R. (2007) Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel. Reviews in Engineering Geology, 18, 1–21.Search in Google Scholar

Vapnik, Y., Galuskin, E.V., Galuskina, I.O., Kusz, J., Stasiak, M., Krzykawski, T., and Dulski, M. (2019) Qatranaite, CaZn2(OH)6·2H2O: a new mineral from altered pyrometamorphic rocks of the Hatrurim Complex, Daba-Siwaqa, Jordan. European Journal of Mineralogy, 31, 575–584.10.1127/ejm/2019/0031-2833Search in Google Scholar

Wieczorek-Ciurowa, K., Fela, K., and Kozak, A.J. (2001) Chromium(III)-ettringite formation and its thermal stability. Journal of Thermal Analysis and Calorimetry, 65, 655–660.10.1023/A:1017978414203Search in Google Scholar

Wojdyla, J.A., Kaminski, J.W., Panepucci, E., Ebner, S., Wang, X., Gabadinho, J., and Wang, M. (2018) DA+ data acquisition and analysis software at the Swiss Light Source macromolecular crystallography beamlines. Journal of Synchrotron Radiation, 25, 293–303.10.1107/S1600577517014503Search in Google Scholar PubMed PubMed Central

Wright, S.E., Foley, J.A., and Hughes, J.M. (2000) Optimization of site occupancies in minerals using quadratic programming. American Mineralogist, 85, 524–531.10.2138/am-2000-0414Search in Google Scholar

Wu, B., Li, X., Ma, B., and Zhang, M. (2012) Solidification of heavy metals in ettringite and its stability research. Presented at the Second International Conference of Microstructural-related Durability of Cementitious Composites, Amsterdam, The Netherlands.Search in Google Scholar

Yang, H., Andrade, M.B., Downs, R.T., Gibbs, R.B., and Jenkins, R.A. (2017) Raygrantite, Pb10Zn(SO4)6(SiO4)2(OH)2, a new mineral isostructural with iranite, from the Big Horn Mountains, Maricopa County, Arizona, USA. Canadian Mineralogist, 54, 625–634.10.3749/canmin.1500058Search in Google Scholar

You, K.S., Ahn, J.W., Cho, H.C., Han, G.C., Han, D.Y., and Cho, K.H. (2007) Competing ion effect of stabilization by Cr(III) & Cr(VI) in ettringite crystal structure. Solid State Phenomena, 124–126, 1629–1632.10.4028/3-908451-31-0.1629Search in Google Scholar

Zhang, M., and Reardon, E.J. (2003) Removal of B, Cr, Mo, and Se from wastewater by incorporation into hydrocalumite and ettringite. Environmental Science & Technology, 37, 2947–2952.10.1021/es020969iSearch in Google Scholar PubMed

Zhou, Q., Lachowski, E.E., and Glasser, F.P. (2004) Metaettringite, a decomposition product of ettringite. Cement and Concrete Research, 34, 703–710.10.1016/j.cemconres.2003.10.027Search in Google Scholar