Blood Hormones as Markers of Training Stress and Overtraining (original) (raw)
Fry RW, Morton AR, Keast D. Periodisation and the prevention of overtraining. Can J Appl Sport Sci 1992; 17: 241–8 CAS Google Scholar
Fry RW, Morton AR, Keast D. Overtraining in athletes. Sports Med 1991; 12: 32–65 PubMedCAS Google Scholar
Kuipers H, Keizer HA. Overtraining in elite athletes. Sports Med 1988; 6: 79–92 PubMedCAS Google Scholar
Lehmann M, Foster C, Keul J. Overtraining in endurance athletes. Med Sci Sports Exerc 1993; 25: 854–62 PubMedCAS Google Scholar
Israel S. Die Erscheinungsformen des Übertrainings. Sportmed 1958; 9: 207–9 Google Scholar
Kindermann W. Overtraining — expression of a disturbed autonomie regulation. Dtsch Z Sportmed 1986; 37: 238–45 Google Scholar
Stone MH, Keith RE, Kearney JT, et al. Overtraining: a review of the signs, symptoms and possible causes. J Appl Sports Sci Res 1991; 5: 35–50 Google Scholar
Herxheimer H. Grundriss der Sportmedizin. Leipzig: Thieme, 1933 Google Scholar
Callister R, Callister RJ, Fleck SJ, et al. Physiological and performance responses to overtraining in elite judo athletes. Med Sci Sports Exerc 1990; 22: 816–24 PubMedCAS Google Scholar
Fry RW, Morton AR, Garcia-Webb P, et al. Biological responses to overload training in endurance sports. Eur J Appl Physiol 1992; 64: 335–44 CAS Google Scholar
Warren BJ, Stone MH, Kearney JT, et al. Performance measures, blood lactate and plasma ammonia as indicators of overwork in elite junior weightlifters. Int J Sports Med 1992; 13: 372–6 PubMedCAS Google Scholar
Galbo H. Hormonal and metabolic adaptation to exercise. Stuttgart, New York: Thieme, 1983 Google Scholar
Kuoppasalmi K, Näveri H, Härkönen M, et al. Plasma cortisol, androstendione, testosterone and luteinizing hormone in running exercise of different intensities. Scand J Clin Lab Invest 1980; 40: 403–9 PubMedCAS Google Scholar
Stegmann H, Kindermann W, Schnabel A. Lactate kinetics and individual anaerobic threshold. Int J Sports Med 1981; 2: 160–5 PubMedCAS Google Scholar
Urhausen A, Coen B, Weiler B, et al. Individual anaerobic threshold and maximum lactate steady state. Int J Sports Med 1993; 12: 134–9 Google Scholar
Urhausen A, Kindermann W. Monitoring of training by determination of hormone concentration in the blood — review and perspectives. In: Liesen H, Weiß M, Baum M, editors. Regulations — und Repairmechanismen. Köln: Deutscher Ärzte-Verlag, 1994: 551–4 Google Scholar
Urhausen A. Das Übertrainingssyndrom — ein multifaktorieller Ansatz im Rahmen einer prospektiven Längsschnittuntersuchung bei ausdauertrainierten Sportlern [post-doctoral thesis]. Saarbrücken: Univ of Saarland, 1993 Google Scholar
Adlercreutz H, Härkönen M, Kuoppasalmi K, et al. Effect of training on plasma anabolic and catabolic steroid hormones and their response during physical exercise. Int J Sports Med 1986; 7 (Suppl.): 27–8 PubMedCAS Google Scholar
Busso T, Häkkinen K, Pakarinen A, et al. Hormonal adaptations modelled responses in elite weightlifters during 6 weeks of training. Eur J Appl Physiol 1992; 64: 381–6 CAS Google Scholar
Häkkinen K, Pakarinen A, Alèn M, et al. Serum hormones during prolonged training of neuromuscular performance. Eur J Appl Physiol 1985; 53: 287–93 Google Scholar
Häkkinen K, Pakarinen A, Alèn M, et al. Relationships between training volume, physical performance capacity, and serum hormone concentrations during prolonged training in elite weight lifters. Int J Sports Med 1987; 8 (Suppl.): 61–5 PubMed Google Scholar
Häkkinen K, Pakarinen A, Alèn M, et al. Daily hormonal and neuromuscular responses to intensive strength training in 1 week. Int J Sports Med 1988; 9: 422–8 PubMed Google Scholar
Kindermann W. Metabolismus und hormonelles Verhalten bei aerober und anaerober Muskelarbeit. In: Rieckert H, editor. Sportmedizin-Kursbestimmung. Berlin, Heidelberg, New York: Springer, 1987: 741–56 Google Scholar
Kindermann W. Metabolic and hormonal reactions in overstrain. Seminar in orthopaedics 1988; 3: 207–16 Google Scholar
Urhausen A, Kullmer T, Kindermann W A seven week follow-up study of the behaviour of testosterone and cortisol during the competition period of rowers. Eur J Appl Physiol 1987; 56: 528–33 CAS Google Scholar
Urhausen A, Kindermann W. Biochemical monitoring of training. Clin J Sports Med 1992; 2: 52–61 Google Scholar
Urhausen A, Weiler B, Coen B, et al. Plasma catecholamines during endurance exercise of different intensities as related to the individual anaerobic treshold. Eur J Appl Physiol 1994; 69: 16–20 CAS Google Scholar
Barron JL, Noakes TD, Levy W, et al. Hypothalamic dysfunction in overtrained athletes. J Clin Endocrinol Metab 1985; 60: 803–6 PubMedCAS Google Scholar
Lehmann M, Gastmann U, Petersen KG, et al. Training — overtraining: performance, and hormone levels, after a defined increase in training volume versus intensity in experienced middle- and long-distance runners. Brit J Sports Med 1992; 26: 233–42 CAS Google Scholar
Parmenter DC. Some medical aspects of the training of college athletes. Boston Med Surg J 1923; 189: 45–50 Google Scholar
Kraemer WJ, Fleck SJ, Callister R, et al. Training responses of plasma beta-endorphin, adrenocorticotropin, and cortisol. Med Sci Sports Exerc 1989; 21: 146–53 PubMedCAS Google Scholar
Costill DL, Flynn MG, Kirwan JP, et al. Effects of repeated days of intensified training on muscle glycogen and swimming performance. Med Sci Sports Exerc 1988; 20: 249–54 PubMedCAS Google Scholar
Christensen NJ, Galbo H. Sympathetic nervous activity during exercise. Ann Rev Physiol 1983; 45: 139–53 CAS Google Scholar
Kaji Y, Ariyoshi K, Tsuda Y, et al. Quantitative correlation between cardiovascular and plasma epinephrine response to mental stress. Eur J Appl Physiol 1989; 59: 221–6 CAS Google Scholar
Yamagushi N, de Chaplain J, Nadeau R. Correlation between the response of the sympathetic stimulation and the release of endogenous catecholamines into the coronary sinus of the dog. Circ Res 1975; 36: 662–7 Google Scholar
Lehmann M, Keul J, Huber G, et al. Plasma catecholamines in trained and untrained volunteers during graduated exercise. Int J Sports Med 1981; 2: 143–7 PubMedCAS Google Scholar
Lehmann M, Kapp R, Himmelsbach M, et al. Time and intensity dependent catecholamine responses during graduated exercise as an indicator of fatigue and exhaustion. In: Knuttgen HG, Vogel JA, Poortmans J, editors. Biochemistry of exercise. Champaign: Human Kinetics Publishers, 1983: 738–48 Google Scholar
Mazzeo RS, Marshall P. Influence of plasma catecholamines on the lactate threshold during graded exercise. J Appl Physiol 1989; 67: 1319–22 PubMedCAS Google Scholar
Kindermann W, Simon G, Keul J. The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol 1979; 42: 25–34 CAS Google Scholar
Kent-Braun JA, Sharma K, Massie B, et al. Absence of metabolic abnormalities in patients with chronic fatigue syndrome [abstract]. Med Sci Sports Exerc 1991; 23 Suppl.: S63 Google Scholar
Kjaer M. Epinephrine and some other hormonal responses to exercise in man: With special reference to physical training. Int J Sports Med 1989; 10: 2–15 PubMedCAS Google Scholar
Péronnet F, Blier P, Brisson G, et al. Reproducibility of plasma catecholamine concentrations at rest and during exercise in man. Eur J Appl Physiol 1986; 54: 555–8 Google Scholar
Pluto R, Cruze SA, Thome C, et al. Inter-individual differences in venous plasma catecholamines. Dtsch Z Sportmed 1986; 37 Suppl.: 22–30 CAS Google Scholar
Pequignot JM, Peyrin L, Péres G. Catecholamine-fuel interrelationships during exercise in fasting men. J Appl Physiol 1980; 48: 109–3 PubMedCAS Google Scholar
Schnabel A, Kindermann W, Schmitt WM, et al. Hormonal and metabolic consequences of prolonged running at the individual anaerobic threshold. Int J Sports Med 1982; 3: 163–8 PubMedCAS Google Scholar
Hooper SL, Traeger Mackinnon LT, Gordon RD, et al. Hormonal responses of elite swimmers to overtraining. Med Sci Sports Exerc 1993; 25: 741–7 PubMedCAS Google Scholar
Brodde ED, Daul A, O’Hara N. ß-adrenoreceptor changes in human lymphocytes, induced by dynamic exercise. Naunyn Schmiedebergs Arch Pharmacol 1984; 325: 190–2 PubMedCAS Google Scholar
Lehmann M. Catecholamines, adrenergic receptors and exercise capacity in trained subjects and in coronary heart disease. In: Kaufmann W, Wambach G, editors. Endocrinology of the heart. Berlin: Springer, 1989: 147–57 Google Scholar
Galbo H, Christensen NJ, Mikines KJ, et al. The effect of fasting on the hormonal response to graded exercise. J Clin Endocrinol Metab 1981; 52: 1106–12 PubMedCAS Google Scholar
Hansen JF, Hesse B, Christensen NJ. Enhanced sympathetic nervous activity after intravenous propanolol in ischaemic heart disease: plasma noradrenaline, splanchnic blood flow and mixed venous oxygen saturation at rest and during exercise. Eur J Clin Invest 1978; 8: 31–6 PubMedCAS Google Scholar
Kniffki KD, Mense S, Schmidt RF. Muscle receptors with fine afferent fibers which may evoke circulatory reflexes. Circ Res 1981; 48 (I Suppl.). 25–31 Google Scholar
Starling RD, Pizza FX, Flynn MG, et al. Run training vs crosstraining: effects of excessive training on running economy [abstract]. Med Sci Sports Exerc 1992; 24 Suppl.: S101 Google Scholar
Lehmann M, Gastmann U, Tauber R, et al. Katecholaminverhalten, Adrenorezeptorendichte an intakten Zellen und Katecholaminempfindlichkeit bei einer Patientin mit primärer orthostatischer Hypotonie. Klin Wochenschr 1986; 64: 1249–54 PubMedCAS Google Scholar
Weiler B, Urhausen A, Coen B, et al. Changes of catecholamine and lactate during training and competition in badminton. In: Liesen H, Weiß M, Baum M, editors. Regulations- und Repairmechanismen. Köln: Deutscher Ärzte-Verlag, 1994: 636–8 Google Scholar
Euler US, Hellner S. Excretion of noradrenaline and adrenaline in muscular work. Acta Physiol Scand 1952; 26: 183–91 Google Scholar
Baumgartner H, Hörtnagl H, Fill H, et al. Capillary plasma catecholamines in sports medicine: development, introduction, and significance. Dtsch Z Sportmed 1988; 39: 306–17 Google Scholar
Dimsdale JE, Moss J. Plasma catecholamines in stress and exercise. JAMA 1980; 243: 340–2 PubMedCAS Google Scholar
Hjemdahl P. Contributions to the workshop ‘plasma catecholamines as markers for sympatho-adrenal activity in man’. Acta Physiol Scand 1984; 121 (Suppl. 527): 1–54 Google Scholar
Lehmann M, Keul J. Evaluation of plasma catecholamines in capillary blood as indicators of stress. Dtsch Z Sportmed 1985; 36: 310–2 CAS Google Scholar
Baumgartner H, Wiedermann CJ, Hörtnagl H, et al. Plasma-catecholamines in arterial and capillary blood. Naunyn Schmiedebergs Arch Pharmacol 1985; 328: 461–3 PubMedCAS Google Scholar
Da Prada M, Zürcher G. Simultaneous radioenzymatic determination of plasma and tissue adrenaline, noradrenaline and dopamine within the femtomole range. Life Sci 1976; 19: 1161–74 PubMed Google Scholar
Holly JMP, Makin HLJ. The estimation of catecholamines in human plasma. Annal Biochem 1983; 128: 257–74 CAS Google Scholar
Aakvaag A, Sand T, Opstad PK, et al. Hormonal changes in serum in young men during prolonged physical strain. Eur J Appl Physiol 1978; 39: 283–91 CAS Google Scholar
Dessypris A, Kuoppasalmi K, Adlercreutz H. Plasma cortisol, testosterone, androstendione and luteinizing hormone (LH) in a non-competitive marathon run. J Ster Biochem 1976; 7: 33–7 CAS Google Scholar
Kindermann W, Schnabel A, Schmitt WM, et al. Catecholamines, growth hormone, cortisol, insulin, and sex hormones in anaerobic and aerobic exercise. Eur J Appl Physiol 1982; 49: 389–99 CAS Google Scholar
Kindermann W, Schmitt WM, Schnabel A, et al. Behaviour of testosterone in blood serum during physical exertion of differing duration and intensity. Dtsch Z Sportmed 1985; 36: 99–104 CAS Google Scholar
Kuoppasalmi K, Näveri H, Rehunen S, et al. Effect of strenuous anaerobic running exercise on plasma growth hormone, cortisol, luteinizing hormone, testosterone, androstendione, estrone and estradiol. J Ster Biochem 1976; 7: 823–9 CAS Google Scholar
Urhausen A, Kindermann W. Behaviour of testosterone, sex hormone binding globulin (SHBG) and cortisol before and after a triathlon competition. Int J Sports Med 1987; 8: 305–8 PubMedCAS Google Scholar
Viru A. Hormones in muscular activity. Boca Raton: CRC Press Inc., 1985 Google Scholar
Kuoppasalmi K, Adlercreutz H. Interaction between catabolic and anabolic steroid hormones in muscular exercise. In: Fotherby K, Pal S, editors. Exercise Endocrinol. Berlin, New York: De Gruyter W & Co, 1985: 65–98 Google Scholar
Anderson DC. Sex hormone binding globulin. Clin Endocrinol 1974; 3: 69–96 CAS Google Scholar
Lipsett MB. Steroid hormones. In: Yen SC, Jaffe RB, editors. Reproductive endocrinology: physiology, pathophysiology and clinical management. Toronto: Saunders WB, 1978: 80–92 Google Scholar
Banfi G, Marinelli M, Roi GS, et al. Usefulness of free testosterone/cortisol ratio during a season of elite speed skating athletes. Int J Sports Med 1993; 14: 373–9 PubMedCAS Google Scholar
Vermeulen A, Verdonck L. Studies on the binding of testosterone to human plasma. Steroids 1968; 11: 609–35 PubMedCAS Google Scholar
Guezennec CY, Leger L, Lhoste F, et al. Hormone and metabolite response to weight-lifting training sessions. Int J Sports Med 1986; 7: 100–5 PubMedCAS Google Scholar
Alèn M, Pakarinen A, Häkkinen K, et al. Responses of serum androgenic-anabolic and catabolic hormones to prolonged strength training. Int J Sports Med 1988; 9: 229–33 PubMed Google Scholar
Häkkinen K, Pakarinen A, Kyröläinen H, et al. Neuromuscular adaptations and serum hormones in females during prolonged power training. Int J Sports Med 1990; 11: 91–8 PubMed Google Scholar
Flynn MG, Pizza FX, Jr Boone JB, et al. Indices of training stress during competitive running and swimming seasons. Int J Sports Med 1994; 15: 21–6 PubMedCAS Google Scholar
Mero A, Jaakkola L, Komi PV. Serum hormones and physical performance capacity in young boy athletes during a 1-year training period. Eur J Appl Physiol 1990; 60: 32–7 CAS Google Scholar
Remes K, Kuoppasalmi K, Adlercreutz H. Effect of long-term physical training on plasma testosterone, androstenedione, luteinizing hormone and sex-hormone-binding globulin capacity. Scand J Clin Lab Invest 1979; 39: 743–9 PubMedCAS Google Scholar
Marx K, Kische B, Hoffmann P. Die Gonadotropine und Sexualsteroide während des Menstruationszyklus bei jungen sportreibenden Frauen. Med Sport 1986; 26: 51–4 CAS Google Scholar
Vervoorn C, Vermulst LJM, Boelens-Quist AM, et al. Seasonal changes in performance and free testosterone: cortisol ratio of elite female rowers. Eur J Appl Physiol 1992; 64: 14–21 CAS Google Scholar
Häkkinen K, Pakarinen A, Kallinen M. Neuromuscular adaptations and serum hormones in women during short-term intensive strength training. Eur J Appl Physiol 1992; 64: 106–11 Google Scholar
Genazzani AR, Lemarchand-Béraud T, Aubert ML, et al. Pattern of plasma ACTH, hGH, and cortisol during menstrual cycle. J Clin Endocrinol Metab 1975; 41: 431–7 PubMedCAS Google Scholar
Murphy A, Cropp C, Smith B, et al. Effect of low-dose oral contraceptive on gonadotropins, androgens, and sex-hormone-binding-globuline in nonhirsute women. Fertil Steril 1990; 53: 35–9 PubMedCAS Google Scholar
de Vries W, Koppeschaar H, Verstappen P, et al. Changes in basai plasma levels of testosterone, cortisol, albumin and SHBG in professional cyclists. Med Sci Sports Exerc 1992; 24 Suppl.: 166 Google Scholar
Keizer HA, Kuipers H, Verstappen FTJ, et al. Limitations of concentration measurements for evaluation of endocrine status of exercising women. Can J Appl Sport Sci 1982; 7: 79–84 PubMedCAS Google Scholar
Fellmann N, Coudert J, Jarrige JF, et al. Effects of endurance training on the androgenic response to exercise in man. Int J Sports Med 1985; 6: 215–9 PubMedCAS Google Scholar
Vervoorn CA, Quist AM, Vermulst LJM, et al. The behaviour of the plasma free testosterone/cortisol ratio during a season of elite rowing training. Int J Sports Med 1991; 12: 257–63 PubMedCAS Google Scholar
Seidman DS, Dolev E, Deuster PA, et al. Androgenic response to long-term physical training in male subjects. Int J Sports Med 1990; 11: 421–4 PubMedCAS Google Scholar
Zimmerman SD, Martin DT, Wilkinson JG, et al. Testosterone/cortisol ratio decreases as a normal response to high intensity aerobic interval training [abstract]. Med Sci Sports Exerc 1991; 23 Suppl.: S124 Google Scholar
Kirwan JP, Costill DL, Flynn MG, et al. Physiological responses to successive days of intense training in competitive swimmers. Med Sci Sports Exerc 1988; 20: 255–9 PubMedCAS Google Scholar
Dressendorfer RH, Wade CE, Iverson D. Decreased plasma testosterone in overtrained runners. Med Sci Sports Exerc 1987; 19 Suppl.: 10 Google Scholar
Nicklas D, Lehnert A. Möglichkeiten einer zielgerichteten Trainingssteuerung durch Nutzung von Ergebnissen zur hormonellen Regulation des Energiestoffwechsels. In: Häcker R, de Marées H, editors. Hormonelle Regulation und psychopsychische Belastung im Leistungssport. Köln: Deutscher Ärzte-Verlag, 1991: 39–46 Google Scholar
Häkkinen K, Keskinen KL, Alén M, et al. Serum hormone concentrations during prolonged training in elite endurancetrained and strength-trained athletes. Eur J Appl Physiol 1989; 59: 233–8 Google Scholar
Hackney AC. Endurance training and testosterone levels. Sports Med 1989; 8: 117–27 PubMedCAS Google Scholar
Hackney AC, Sinning WE, Bruot BC. Hypothalamic-pituitarytesticular axis function in endurance-trained males. Int J Sports Med 1990; 11: 298–303 PubMedCAS Google Scholar
Tegelman R, Lindeskog P, Carlström K, et al. Peripheral hormone levels in healthy subjects during controlled fasting. Acta Endocrinol (Copenh) 1986; 113: 457–62 CAS Google Scholar
Sattler R, Rademacher G, Appelt D, et al. Die Beeinflussung des SHBG (sex-hormone-binding globulin) durch physische Belastung. In: Häcker R, de Marées H, editors. Hormonelle Regulation und psychopsychische Belastung im Leistungssport. Köln: Deutscher Ärzte-Verlag, 1991: 32–8 Google Scholar
Adlercreutz H. Western diet and western diseases: some hormonal and biochemical mechanisms and associations. Scand J Clin Invest 1990; 50 (201 Suppl.): 3–23 Google Scholar
Florini JR. Hormonal control of muscle cell growth. J Anim Sci 1985; 61: 21–37 Google Scholar
Jezova D, Vigas M. Testosterone response to exercise during blockade and stimulation of adrenergic receptors in man. Horm Res 1981; 15: 141–7 PubMedCAS Google Scholar
Cadoux-Hudson TA, Few JD, Imms FJ. The effects of exercise on the production and clearance of testosterone in well trained young men. Eur J Appl Physiol 1985; 54: 321–5 CAS Google Scholar
Guglielmini C, Paolini AR, Conconi F. Variations of serum testosterone concentrations after physical exercises of different duration. Int J Sports Med 1984; 5: 246–9 PubMedCAS Google Scholar
Shimomitsu T, Iwane H, Katsumura Y, et al. Serum testosterone/cortisol ratio (T/C) as an indicator of severity of physical stress in ultraendurance exercises [abstract]. Med Sci Sports Exerc 1991; 23 Suppl.: S122 Google Scholar
Smals AGH, Kloppenborg PWC, Benraad TJ. Circannual cycle in plasma testosterone levels in man. J Clin Endocrinol Metab 1976; 42: 979–82 PubMedCAS Google Scholar
Cumming DC, Quigley ME, Yen SSC. Acute suppression of circulating testosterone levels by cortisol in men. J Clin Endocrinol Metab 1983; 57: 671–3 PubMedCAS Google Scholar
Cumming DC, Wheeler GD, McColl EM. The effects of exercise on reproductive function in men. Sports Med 1989; 7: 1–17 PubMedCAS Google Scholar
Wheeler GD, Singh M, Pierce WD, et al. Endurance training decreases serum testosterone levels in men without change in luteinizing hormone pulsatile release. J Clin Endocrinol Metab 1991; 72: 422–5 PubMedCAS Google Scholar
Bambino TH, Hsuch AJW. Direct inhibitory effect of glucocorticoids upon testicular luteinizing hormone receptor and steroidogenesis in vivo and in vitro. Endocrinol 1981; 108: 2142–8 CAS Google Scholar
Guezennec CY, Ferre P, Serrurier B, et al. Effect of prolonged physical exercise and fasting upon plasma testosterone levels in rats. Eur J Appl Physiol 1982; 49: 159–68 CAS Google Scholar
Doerr P, Pirke KM. Cortisol induced suppression of plasma testosterone and protein metabolism in normal adult males. J Clin Endocrinol Metab 1976; 43: 622–8 PubMedCAS Google Scholar
De Souza MJ, Arce JC, Pescatello LS, et al. Gonadal hormones and semen quality in male runners: a volume threshold effect of endurance training. Int J Sports Med 1994; 15: 383–91 PubMed Google Scholar
Galbo H, Hummer L, Petersen IB, et al. Thyroid and testicular responses to graded and prolonged exercise in men. Eur J Appl Physiol 1977; 36: 101–6 CAS Google Scholar
Bartke A, Dalterio S. Effects of prolactin on the sensitivity of the testis to LH. Biol Reprod 1976; 15: 90–3 PubMedCAS Google Scholar
Bliss EL, Frischat A, Samuels L. Brain and testicular function. Life Sci 1972; 11: 231–6 CAS Google Scholar
Lupo C, Baldi L, Bonifazi M, et al. Androgen levels following a football match. Eur J Appl Physiol 1985; 54: 494–6 CAS Google Scholar
Bagatell CJ, Bremner WJ. Sperm counts and reproductive hormones in male marathoners and lean controls. Fertil Steril 1990; 53: 688–92 PubMedCAS Google Scholar
Ayers JWT, Komesu Y, Romani T, et al. Anthropomorphic, hormonal, and psychologic correlates of semen quality in endurance-trained male athletes. Fertil Steril 1985; 43: 917–21 PubMedCAS Google Scholar
Griffith RB, Dressendorfer RH, Fullbright CD. Effects of overwork on testosterone, sperm count and libido [abstract]. Med Sci Sports Exerc 1988; 20 Suppl.: 39 Google Scholar
McConnell TR, Sinning WE. Exercise and temperature effects on human sperm production and testosterone levels. Med Sci Sports Exerc 1984; 16: 51–5 PubMedCAS Google Scholar
Kuntz JL, Caillard C, Werle CL, et al. Osteoporose avec déficit androgénique chez un marcheur. Rev Rhum 1990; 57: 5–7 PubMedCAS Google Scholar
Siegenthaler W. Klinische Pathophysiologie. Thieme: Stuttgart, 1987: 288–320 Google Scholar
Bergamini E, Bombara C, Pelligrino C. The effect of testosterone on glycogen metabolism in rat levator ani muscle. Biochim Biophys Acta 1969; 177: 220–34 PubMedCAS Google Scholar
Gillespie CA, Edgerton VR. The role of testosterone in exercise induced glycogen supercompensation. Horm Metab Res 1970; 2: 364–6 PubMedCAS Google Scholar
Mayer M, Rosen F. Interaction of anabolic steroids with glucocorticoid receptor sites in rat muscle cytosol. Am J Physiol 1975; 229: 1381–6 PubMedCAS Google Scholar
Inoue K, Yamasaki S, Fushiki T, et al. Androgen receptor antagonist suppresses exercise-induced hypertrophy of sceletal muscle. Eur J Appl Physiol 1994; 69: 88–91 CAS Google Scholar
Seene T, Viru A. The catabolic effect of glucocorticoids on different types of skeletal muscle fibres and its dependence upon muscle activity and interaction with anabolic steroids. J Ster Biochem 1982; 16: 349–52 CAS Google Scholar
Dahlmann B, Widjaja A, Reinauer H. Antagonistic effects of endurance training and testosterone on alkaline proteolytic activity in rat skeletal muscles. Eur J Appl Physiol 1981; 46: 229–35 CAS Google Scholar
McManus BM, Lamb DR, Judis JJ, et al. Skeletal muscle leucine incorporation and testosterone uptake in exercised guinea pigs. Eur J Appl Physiol 1975; 34: 149–56 CAS Google Scholar
Inoue K, Yamasaki S, Fushiki T, et al. Rapid increase in the number of androgen receptors following electrical stimulation of the rat muscle. Eur J Appl Physiol 1993; 66: 134–40 CAS Google Scholar
Sutton JR, Casey JH. The adrenocortical response to competitive athletics in veteran athletes. J Clin Endocrinol Metab 1975; 40: 135–8 PubMedCAS Google Scholar
Stray-Gundersen J, Videman T, Snell PG. Changes in selected objective parameters during overtraining [abstract]. Med Sci Sports Exerc 1986; 18 Suppl.: 54–5 Google Scholar
Tegelman R, Johansson C, Hemmingsson P, et al. Endogenous anabolic and catabolic steroid hormones in male and female athletes during off season. Int J Sports Med 1990; 10: 103–6 Google Scholar
Bullen BA, Skrinar GS, Beitins IZ, et al. Endurance training effects on plasma hormonal responsiveness and sex hormone excretion. J Appl Physiol 1984; 56: 1453–63 PubMedCAS Google Scholar
Tabata I, Atomi Y, Mutoh Y, et al. Effect of physical training on the responses of serum adrenocorticotropic hormone during prolonged exhausting exercise. Eur J Appl Physiol 1990; 61: 188–92 CAS Google Scholar
Farrell PA, Garthwaite TL, Gustafson AB. Plasma adrenocorticotropin and cortisol responses to submaximal and exhaustive exercise. J Appl Physiol 1983; 55: 1441–4 PubMedCAS Google Scholar
Few JD. Effect of exercise on the secretion and metabolism of cortisol in man. J Endocrinol 1974; 62: 341–53 PubMedCAS Google Scholar
Weicker H. Hormonal regulation during endurance and short-term exercise. In: Franz IW, Mellerowicz H, Noack W, editors. Training und Sport zur Prävention in der technisierten Umwelt. Berlin: Springer, 1985: 42–50 Google Scholar
Cashmore GC, Davies CTM, Few JD. Relationship between increase in plasma cortisol concentration and rate of cortisol secretion during exercise in man. J Endocrinol 1977; 72: 109–10 PubMedCAS Google Scholar
Davies CTM, Few FD. Effect of exercise on adrenocortical function. J Appl Physiol 1973; 35: 887–91 PubMedCAS Google Scholar
Dulac S, Brisson GR, Péronnet F, et al. Réponses hormonales à une répétition d’exercices anaérobies lactacides chez des sujets masculins. Can J Appl Sport Sci 1986; 11: 178–85 PubMedCAS Google Scholar
Poland JL, Myers TD, Witorsch RJ, et al. Plasma corticosterone and cardiac glycogen levels in rats after exercise. Proc Soc Exp Biol Med 1975; 150: 148–50 PubMedCAS Google Scholar
Allaben WT. The adrenal cortex. In: Gass GH, Kaplan HM, editors. Handbook of endocrinology. Boca Raton: CRC Press, 1982: 189–228 Google Scholar
Elias AN, Wilson AF. Exercise and gonadal function. Hum Reprod 1993; 8: 1747–61 PubMedCAS Google Scholar
Elias AN, Wilson AF, Pandian MR, et al. CRH and gonadotrophin secretion in physically active males after acute exercise. Eur J Appl Physiol 1991; 62: 171–4 CAS Google Scholar
Vasankari TJ, Kujala UM, Taimala S, et al. Pituitary gonadal response to gonadotropin-releasing hormone stimulation is enhanced in men after strenuous physical exercise. Acta Endocrinol (Copenh) 1993; 129: 9–14 CAS Google Scholar
MacConnie SE, Barkan A, Lampman RM, et al. Decreased hypothalamic gonadotropin-releasing hormone secretion in male marathon runners. New Engl J Med 1986; 7: 411–7 Google Scholar
Ronkainen H. Depressed follicle stimulating hormone, luteinizing hormone and prolactin responses to luteinizing hormone releasing hormone, thyreotropin releasing hormone, and metoclopramide test in endurance runners in the hard training season. Fertil Steril 1985; 40: 755–9 Google Scholar
Loucks AB, Health EM, Law TD, et al. Dietary restriction reduces luteinizing hormone pulse frequency in young menstruating women [abstract]. Endocrine Society, 1993
Reame NE, Sauder SE, Case GD, et al. Pulsatile gonadotropin secretion in women with hypothalamic amenorrhea: evidence that reduced frequency of gonadotropin-releasing hormone secretion is the mechanism of persistent anovulation. J Clin Endocrinol Metab 1985; 61: 851–8 PubMedCAS Google Scholar
Keizer HA, Menheere P, Kuipers H, et al. Changes in pulsatile LH secretion after exhaustive exercise and training [abstract]. Med Sci Sports Exerc 1987; 19 Suppl.: 5 Google Scholar
Prior JC. Reversible reproductive changes with endurance training. In: Shephard RJ, Astrand PO, editors. Endurance in sport. Oxford: Blackwell Scientific Publications, 1992: 365–73 Google Scholar
Leinberry CF, McShane RB, Steward Jr WG, et al. A displaced subtrochanteric stress fracture in a young amenorrheic athlete. Am J Sports Med 1992; 20: 485–7 PubMedCAS Google Scholar
Cook SD, Harding AF, Thomas KA, et al. Trabecular bone density and menstrual function in women runners. Am J Sports Med 1987; 15: 503–7 PubMedCAS Google Scholar
Drinkwater BL, Bruemmer B, Chestnut III CH. Menstrual history as a determinant of current bone density in young athletes. JAMA 1990; 263: 545–8 PubMedCAS Google Scholar
Yeager KK, Agostini R, Nattiv A, et al. The female athlete triad: disordered eating, amenorrhea, osteoporosis. Med Sci Sports Exerc 1993; 25: 775–7 PubMedCAS Google Scholar
Schwartz B, Cumming DC, Riordan E, et al. Exercise-associated amenorrhea: a distinct entity? Am J Obstet Gynecol 1981; 141: 662–70 PubMedCAS Google Scholar
Rivier C, Vale W. Diminished responsiveness of the hypothalamic-pituitary-adrenal axis of the rat during exposure to prolonged stress: a pituitary-mediated mechanism. Endocrinol 1987; 121: 1320–8 CAS Google Scholar
Heitkamp HC, Schmid K, Scheib K. β-Endorphin and adrenocorticotropic hormone production during marathon and incremental exercise. Eur J Appl Physiol 1993; 66: 269–74 CAS Google Scholar
Tabata I, Atomi Y, Miyashita M. Blood glucose concentration dependent ACTH and cortisol responses to prolonged exercise. Clin Physiol 1984; 4: 299–307 PubMedCAS Google Scholar
Keizer HA, Kuipers H, De Haan J, et al. Multiple hormonal responses to physical exercise in eumenorrheic trained and untrained women. Int J Sports Med 1987; 8 Suppl.: 139–50 PubMedCAS Google Scholar
Keizer HA, Kuipers H, De Haan J, et al. Effect of a 3-month endurance training program on metabolic and multiple hormonal responses to exercise. Int J Sports Med 1987; 8 Suppl.: 154–60 PubMed Google Scholar
Buono MJ, Yeager JE, Sucec AA. Effect of aerobic training on the plasma ACTH response to exercise. J Appl Physiol 1987; 63: 2499–501 PubMedCAS Google Scholar
Snyder AC, Jeukendrup AE, Hesselink MKC, et al. A physiological/psychological indicator of over-reaching during intensive training. Int J Sports Med 1993; 14: 29–32 PubMedCAS Google Scholar
Persson SGB, Larson M, Lindholm A. Effects of training on adreno-cortical function and red cell volume in trotters. Zeitbl Vet Med 1980; 27: 261–8 CAS Google Scholar
Phillips LS, Vassilopoulou-Sellin R. Somatomedins. New Engl J Med 1980; 302: 371-80, 438–446 PubMedCAS Google Scholar
Cooper DM. Evidence for and mechanisms of exercise modulation of growth — an overview. Med Sci Sports Exerc 1994; 26: 733–9 PubMedCAS Google Scholar
Sutton J, Lazarus L. Growth hormone in exercise: comparison of physiological and pharmacological stimuli. J Appl Physiol 1976; 41: 523–7 PubMedCAS Google Scholar
Hartley LH, Mason JW, Hogan RP, et al. Multiple hormonal responses to prolonged exercise in relation to physical training. J Appl Physiol 1972; 33: 607–10 PubMedCAS Google Scholar
Gray AB, Telford RD, Weidemann MJ. Endocrine response to interval exercise. Eur J Appl Physiol 1993; 66: 366–71 CAS Google Scholar
Snegovskaya V, Viru A. Elevation of cortisol and growth hormone levels in the course of further improvement of performance capacity in trained rowers. Int J Sports Med 1993; 14: 202–6 PubMedCAS Google Scholar
Kelly PJ, Eisman JA, Stuart MC, et al. Somatomedin-C, physical fitness, and bone detensity. J Clin Endocrinol Metab 1990; 70: 718–23 PubMedCAS Google Scholar
Poehlman ET, Copeland KC. Influence of physical activity on insulin-like groth factor-I in healthy younger and older men. J Clin Endocrinol Metab 1990; 71: 1468–73 PubMedCAS Google Scholar
Weltman H, Weltman JY, Schurrer G, et al. Endurance training amplifies the pulsatile release of growth hormone: effects of training intensity. J Appl Physiol 1992; 72: 2188–96 PubMedCAS Google Scholar
Beyer P, Witt D, Knuppen S, et al. Änderungen spontaner nächtlicher Hormonsekretion bei Leistungssportlern während eines Trainingsjahres. In: Bernett P, Jeschke D, editors. Sport und Medizin — Pro und Contra. München: Zuckschwerdt, 1991: 511–3 Google Scholar
Walsh BT, Buig-Antich J, Goetz R, et al. Sleep and growth hormone secretion in women athletes. Electroencephalogr Clin Neurophysiol 1984; 57: 528–31 PubMedCAS Google Scholar
Goldfarb AH, Hatfield BD, Armstrong D, et al. Plasma beta-endorphin concentration: response to intensity and duration of exercise. Med Sci Sports Exerc 1990; 22: 241–4 PubMedCAS Google Scholar
Rahkila P, Hakala E, Alèn N, et al. β-endorphin and corticotropin release is dependent on a threshold intensity of running exercise in male endurance athletes. Life Sci 1988; 43: 551–8 PubMedCAS Google Scholar
Schwarz L, Kindermann W. Changes of β-endorphin levels in response to aerobic and anaerobic exercise. Sports Med 1992; 13: 25–36 PubMedCAS Google Scholar
Schwarz L, Kindermann W. β-Endorphin, catecholamines, and cortisol during exhaustive endurance exercise. Int J Sports Med 1989; 10: 324–8 PubMedCAS Google Scholar
Schwarz L, Kindermann W. β-Endorphin, adrenocorticotropic hormone, cortisol and catecholamines during aerobic and anaerobic exercise. Eur J Appl Physiol 1990; 61: 165–71 CAS Google Scholar
Keizer HA, Platen P, Koppeschaar H, et al. Blunted β-endorphin responses to corticotropin releasing hormone and exercise after exhaustive training [abstract]. Int J Sports Med 1991; 12: 97 Google Scholar
Caston AL, Rodd D, Deaver DR, et al. Exercise training- induced alterations in pituitary sensitivity in the female rat [abstract]. Med Sci Sports Exerc 1991; 23 Suppl.: 124 Google Scholar
Schwarz L, Kullmer T, Kindermann W Effect of chronic β1-selective blockade on the β-endorphin response during exhaustive endurance exercise. In: Böning D, Braumann KM, Busse MW, et al., editors. Sport — Rettung oder Risiko für die Gesundheit? Köln: Deutscher-Ärzte Verlag, 1989: 166–70 Google Scholar
Boyden TW, Pamenter RW, Grosso D, et al. Prolactin responses, menstrual cycles, and body composition of women runners. J Clin Endocrinol Metab 1982; 54: 711–4 PubMedCAS Google Scholar
De Meirleir KL, Baeyens L, L’Hermite-Baleriaux M, et al. Exercise-induced prolactin release is related to anerobiosis. J Clin Endocrinol Metab 1985; 60: 1250–2 PubMed Google Scholar
Leblanc H, Lachelin GCL, Abu-Fadil S, et al. Effects of dopamine infusion on pituitary hormone secretion in humans. J Clin Endocrinol Metab 1976; 43: 668–74 PubMedCAS Google Scholar
Ojeda SR, McCann SM. Control of LH and FSH release by LHRH: influence of prolactin neurotransmitters. Clin Obstet Gynecol 1978; 5: 283–303 CAS Google Scholar
Jezler A. Sportärztliche Aufgaben. Schweiz Med Wochenschr 1939; 20: 151–5 Google Scholar
Porte D, Graber AL, Kuzuya T, et al. The effect of epinephrine on immunoreactive insulin levels in man. J Clin Invest 1966; 45: 228–36 PubMedCAS Google Scholar
Berg A, Lehmann M, Keul J. Körperliche Aktivität bei Gesunden und Koronarkranken. Stuttgart, New York: Thieme, 1986: 89–104 Google Scholar
Morley JE. Appetite regulation by gut peptides. Ann Rev Nutr 1990; 10: 383–95 CAS Google Scholar
South SA, Asplin CM, Carlson EC, et al. Alterations in luteinizing hormone secretory activity in women with insulin-dependent diabetes mellitus and secondary amenorrhea. J Clin Endocrinol Metab 1993; 76: 1048–53 PubMedCAS Google Scholar
Malabu UH, McCarthy HD, McKibben PE, et al. Peripheral insulin administration attenuates the increase in neuropeptide concentrations in hypothalamic arcuate nucleus of fasted rates. Peptides 1992; 13: 1097–102 PubMedCAS Google Scholar
Tegelman R, Aberg T, Poussette A, et al. Effects of a diet regimen on pituitary and steroid hormones in male ice hockey playes. Int J Sports Med 1992; 13: 424–30 PubMedCAS Google Scholar
Tsai L, Karpakka J, Aginger C. Basal concentrations of anabolic and catabolic hormones in relation to endurance exercise after short-term changes in diet. Eur J Appl Physiol 1993; 66: 304–8 CAS Google Scholar
McMurray RG, Proctor CR, Wilson WL. Effect of caloric deficit and dietary manipulation on aerobic and anaerobic exercise. Int J Sports Med 1991; 12: 167–72 PubMedCAS Google Scholar
Althoff PH, Schifferdecker E, Neubauer M. Anorexia nervosa — endokrine Veränderungen. Med Klin 1986; 81: 795–803 CAS Google Scholar
Alèn M, Reinilä M, Vihko R. Response of serum hormones to androgen administration in power athletes. Med Sci Sports Exerc 1985; 17: 354–9 PubMed Google Scholar
Alèn M, Rahkila P. Anabolic-androgenic steroid effects on endocrinology and lipid metabolism in athletes. Sports Med 1988; 6: 327–32 PubMed Google Scholar
Fujioka M, Shinohara Y, Baba S, et al. Acute suppression of endogenous testosterone levels by exogenous testosterone in normal men. Life Sci 1987; 41: 945–9 PubMedCAS Google Scholar
Martikainen H, Alèn M, Rahkila P, et al. Testicular responsiveness to human chorionic gonadotropin during transient hypogonadotropic hypogonadism induced by androgenic anabolic steroids in power athletes. J Steroid Biochem 1986; 24: 109–12 Google Scholar
Bouissou P, Péronnet F, Brisson G, et al. Metabolic and endocrine responses to graded exercise under acute hypoxia. Eur J Appl Physiol 1986; 55: 290–4 CAS Google Scholar
Vasankari T, Rusko H, Kujala UM, et al. The effect of ski training at altitude and racing on pituitary, adrenal and testicular function in men. Eur J Appl Physiol 1993; 66: 221–5 CAS Google Scholar
Borer KT. Neurohumoral mediation of exercise-induced growth. Med Sci Sports Exerc 1994; 26: 741–54 PubMedCAS Google Scholar
Costill DC, Bowers R, Branam G, et al. Muscle glycogen utilisation during prolonged exercise on successive days. J Appl Physiol 1973; 31: 834–8 Google Scholar
Kochan RC, Lawrence DR, Kochan BMJ, et al. Hypophysectomy and skeletal muscle glycogen replenishment after exercise. Med Sci Sports Exerc 1978; 10: 44–8 Google Scholar
Dallman MF, Jones MT, Vernikos-Danellis M, et al. Corticoid feedback control of ACTH secretion: rapid effects of bilateral adrenalectomy on plasma ACTH in rat. Endocrinology 1972; 91: 961–8 PubMedCAS Google Scholar
Kjeldsen KA, Richter EA, Galbo H, et al. Training increases the concentration of (3H) ouabaine-binding sites in rat skeletal muscle. Biochim Biophys Acta 1986; 860: 708–12 PubMedCAS Google Scholar
Knochel JP, Blanchley JD, Johnson JH, et al. Muscle cell electrical hyperpolarisation and reduced exercise hyperkaliemia in physically conditioned dogs. J Clin Invest 1985; 75: 740–5 PubMedCAS Google Scholar
Moss RF, Raven PB, Knochel JP, et al. The effect of training on resting muscle membrane potentials. Int Ser Sports Sci 1983; 13: 806–11 Google Scholar
Clausen T, Flatman JA. B2-adrenoreceptors mediate the stimulating effect of adrenaline on active electrogenic Na-K-transport in rat soleus muscle. Brit J Pharmacol 1980; 68: 749–55 CAS Google Scholar
Kullmer T, Kindermann W. Physical performance and serum potassium under chronic beta-blockade. Eur J Appl Physiol 1985; 54: 350–4 CAS Google Scholar
Carlsson E, Fellenius E, Lundborg P, et al. β-Adrenoreceptor blockers, plasma-potassium, and exercise. Lancet 1978; 2: 424–5 PubMedCAS Google Scholar
Jones DA. Muscle fatigue due to changes beyond the neuromuscular junction. In: Porter R, Whelan J, editors. Human muscle fatigue: physiological mechanisms. London: Pitman Medical, 1981: 178–96 Google Scholar
Juel C. The effect of B2-adrenoreceptor activation on ion-shifts and fatigue in mouse soleus muscles stimulated in vitro. Acta Physiol Scand 1988; 134: 209–16 PubMedCAS Google Scholar
Sahlin K. Intracellular pH and energy metabolism in skeletal muscle of man. With special reference to exercise. Acta Physiol Scand 1978; 103 Suppl. 455: 3–56 Google Scholar
Sahlin K. Muscle fatigue and lactic acid accumulation. Acta Physiol Scand 1986; 128 Suppl. 556: 83–91 Google Scholar
Newsholme EA, Blomstrand E, McAndrew N, et al. Biochemical causes of fatigue and overtraining. In: Shephard RJ, Astrand PO, editors. Endurance in sport. Oxford: Blackwell Scientific Publications, 1992: 351–64 Google Scholar
Bailey SP, Davis JM, Ahlborn EN. Neuroendocrine and substrate responses to altered brain 5-HT activity during prolonged exercise to fatigue. J Appl Physiol 1993; 74: 3006–12 PubMedCAS Google Scholar
Bagdy G, Calogero AE, Murphy D, et al. Serotonin agonists cause parallel activation of the sympathoadrenomedullary system and the hypothalamo-pituitary-adrenocortical axis in conscious rats. Endocrinol 1989; 125: 2664–9 CAS Google Scholar
Yehuda R, Meyer JS. A role for serotonin in the hypothalamicpituitary-adrenal response to insulin stress. Neuroendocrinol 1984; 38: 25–32 CAS Google Scholar
Hoffman-Goetz L, Pedersen BK. Exercise and the immune system: a model of the stress response? Immunol Today 1994; 15: 382–387 PubMedCAS Google Scholar
Bauman H, Goldie J. The acute phase response. Immunol Today 1994; 15: 73–80 Google Scholar
Verde T, Thomas S, Shephard RJ. Potential markers of heavy training in highly trained distance runners. Br J Sports Med 1992; 26: 167–75 PubMedCAS Google Scholar
Gabriel H, Urhausen A, Valet G, et al. Diagnostic approach towards recognizing overtraining by lymphocyte immunophenotyping in endurance trained athletes [abstract]. Int J Sports Med 1994; 15: 358 Google Scholar
Valet G, Tschöpe D, Gabriel H, et al. Standardized, self learning flow cytometric list mode data classification for thrombocyte and lymphocyte immune phenotyping. Ann N Y Acad Sci 1993; 677: 233–51 PubMedCAS Google Scholar
Parry-Billings M, Blomstrand E, McAndrew N, et al. A communicational link between skeletal muscle, brain, and cells of immune system. Int J Sports Med 1990; 11: S122–8 PubMed Google Scholar
Fitzgerald L. Overtraining increases the susceptibility to infection. Int J Sports Med 1991; 12 Suppl.: S5–S8 PubMed Google Scholar
Keast D, Cameron K, Morton AR. Exercise and immune response. Sports Med 1988; 5: 248–67 PubMedCAS Google Scholar
Jost J, Weiss M, Weicker H. Different regulation of adrenergic receptor systems in different periods of training in swimmers and long distance runners. In: Böning D, Braumann KM, Busse MW, et al., editors. Sport — Rettung oder Risiko für die Gesundheit. Köln: Deutscher Ärzte-Verlag, 1989: 141–5 Google Scholar