The Effect of Endurance Training on Parameters of Aerobic Fitness (original) (raw)
Wenger HA, Bell GJ. The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med 1986; 3: 346–56 PubMedCAS Google Scholar
Pierce EF, Weltman A, Seip RL, et al. Effects of training specificity on the lactate threshold and V̇O2 peak. Int J Sports Med 1990; 11: 267–72 PubMedCAS Google Scholar
Neufer PD. The effect of detraining and reduced training on the physiological adaptations to aerobic exercise training. Sports Med 1989; 8: 302–21 PubMedCAS Google Scholar
McKenzie DC. Markers of excessive exercise. Can J Appl Physiol 1999; 24: 66–73 PubMedCAS Google Scholar
Davies CTM, Thomason MW. Aerobic performance of female marathon and male ultramarathon athletes. Eur J Appl Physiol 1979; 41: 233–45 CAS Google Scholar
Leger L, Mercier D, Gauvin L. The relationship between % V̇2max and running performance time. In: Landers DM, editor. Sport and elite performers. Champaign (IL): Human Kinetics, 1986:113–20 Google Scholar
Monod H, Scherrer J. The work capacity of a synergic muscle group. Ergonomics 1965; 8: 329–38 Google Scholar
Wilkie DR. Equations describing power input by humans as a function of duration of exercise. In: Ceretelli P, Whipp BJ, editors. Exercise bioenergetics and gas exchange. North-Holland: Elsevier, 1980: 75–81 Google Scholar
Whipp BJ, Ward SA, Lamarra N, et al. Parameters of ventilatory and gas exchange dynamics during exercise. J Appl Physiol 1982; 52: 1506–13 PubMedCAS Google Scholar
Hill DW. Energy system contributions in middle-distance running events. J Sports Sci 1999; 17: 477–83 PubMedCAS Google Scholar
Saltin B, Astrand PO. Maximal oxygen uptake in athletes. J Appl Physiol 1967; 23: 353–8 PubMedCAS Google Scholar
Costill DL, Thomason H, Roberts E. Fractional utilisation of the aerobic capacity during distance running. Med Sci Sports 1973; 5: 248–52 PubMedCAS Google Scholar
Saltin B, Strange S. Maximal oxygen uptake: ‘old’ and ‘new’ arguments for a cardiovascular limitation. Med Sci Sports Exerc 1992; 24: 30–7 PubMedCAS Google Scholar
Spina RJ, Ogawa T, Martin WH, et al. Exercise training prevents decline in stroke volume during exercise in young healthy subjects. J Appl Physiol 1992; 72: 2458–62 PubMedCAS Google Scholar
Paterson DH, Shephard RJ, Cunningham D, et al. Effects of physical training upon cardiovascular function following myocardial infarction. J Appl Physiol 1979; 47: 482–9 PubMedCAS Google Scholar
Spina RJ. Cardiovascular adaptations to endurance exercise training in older men and women. Exerc Sport Sci Rev 1999; 27: 317–32 PubMedCAS Google Scholar
Shephard RJ. Exercise physiology and performance of sport. Sports Sci Rev 1992; 1: 1–12 Google Scholar
Green HJ, Jones LL, Painter DC. Effects of short-term training on cardiac function during prolonged exercise. Med Sci Sports Exerc 1990; 22: 488–93 PubMedCAS Google Scholar
Tabata I, Irisama K, Kouzaki M, et al. Metabolic profile of high intensity intermittent exercises. Med Sci Sports Exerc 1997; 29: 390–5 PubMedCAS Google Scholar
Carter H, Jones AM, Doust JH. Effect of six weeks of endurance training on the lactate minimum speed. J Sports Sci 1999; 17: 957–67 PubMedCAS Google Scholar
Gibbons E, Jessup G, Wells T, et al. Effects of various training intensity levels on anaerobic threshold and aerobic capacity in females. J Sports Med Phys Fitness 1983; 23: 315–8 PubMedCAS Google Scholar
Gaesser GA, Poole DC, Gardner BP. Dissociation between V̇O2max and ventilatory threshold responses to endurance training. Eur J Appl Physiol 1984; 53: 242–7 CAS Google Scholar
Spina RJ, Chi MM, Hopkins MG, et al. Mitochondrial enzymes increase in muscle in response to 7–10 days of cycle exercise. J Appl Physiol 1996; 80: 2250–4 PubMedCAS Google Scholar
Mier CM, Turner MJ, Ehsani AA, et al. Cardiovascular adaptations to 10 days of cycle exercise. J Appl Physiol 1997; 83: 1900–6 PubMedCAS Google Scholar
Weston A, Myburgh K, Lindsay F, et al. Skeletal muscle buffering capacity and endurance performance after high intensity interval training by well-trained cyclists. Eur J Appl Physiol 1997; 75: 7–13 CAS Google Scholar
Franch J, Madsen K, Djurhuus MS, et al. Improved running economy following intensified training correlates with reduced ventilatory demands. Med Sci Sports Exerc 1998; 30: 1250–6 PubMedCAS Google Scholar
Billat VL, Flechet B, Petit B, et al. Interval training at V̇O2max: effects on aerobic performance and overtraining markers. Med Sci Sports Exerc 1999; 31: 156–63 PubMedCAS Google Scholar
Hickson R, Hagberg J, Ehsani A, et al. Time course of the adaptive responses of aerobic power and heart rate to training. Med Sci Sports Exerc 1981; 13: 17–20 PubMedCAS Google Scholar
Convertino V. Blood volume: its adaptation to endurance training. Med Sci Sports Exerc 1991; 23: 1338–48 PubMedCAS Google Scholar
Green HJ, Sutton JR, Coates G, et al. Response of red cell and plasma volume to prolonged training in humans. J Appl Physiol 1991; 70: 1810–5 PubMedCAS Google Scholar
Rusko H. Development of aerobic power in relation to age and training in cross-country skiers. Med Sci Sports Exerc 1992; 24: 1040–7 PubMedCAS Google Scholar
Martin D, Vroon D, May D, et al. Physiological changes in elite male distance runners training for Olympic competition. Physician Sports Med 1986; 14: 152–68 Google Scholar
Jones AM. A 5-year physiological case study of an Olympic runner. Br J Sports Med 1998; 32: 39–43 PubMedCAS Google Scholar
Conley D, Krahenbuhl G. Running economy and distance running performance of highly trained athletes. Med Sci Sports 1980; 12: 357–60 CAS Google Scholar
Coyle EF, Feltners ME, Kautz SA, et al. Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc 1991; 23: 93–107 PubMedCAS Google Scholar
Morgan D, Craib M. Physiological aspects of running economy. Med Sci Sports Exerc 1992; 24: 456–61 PubMedCAS Google Scholar
Horowitz JF, Sidossis LS, Coyle EF. High efficiency of type I muscle fibers improves performance. Int J Sports Med 1994; 15: 152–7 PubMedCAS Google Scholar
Londeree BR. The use of laboratory test results with long distance runners. Sports Med 1986; 3: 201–13 PubMedCAS Google Scholar
Morgan DW, Bransford DR, Costill DL, et al. Variation in the aerobic demand of running among trained and untrained subjects. Med Sci Sports Exerc 1995; 27: 404–9 PubMedCAS Google Scholar
Pate RR, Macera CA, Bailey SP, et al. Physiological, anthropometric, and training correlates of running economy. Med Sci Sports Exerc 1995; 24: 1128–33 Google Scholar
Morgan DW, Daniels JT. Relationship between V̇O2max and the aerobic demand of running in elite distance runners. Int J Sports Med 1994; 15: 426–9 PubMedCAS Google Scholar
Conley D, Krahenbuhl G, Burkett L, et al. Following Steve Scott: physiological changes accompanying training. Physician Sports Med 1984; 12: 103–6 Google Scholar
Wilcox A, Bulbulian R. Changes in running economy relative to V̇O2max during a cross-country season. J Sports Med Phys Fitness 1984; 24: 321–6 PubMedCAS Google Scholar
Overend TJ, Paterson DH, Cunningham DA. The effect of interval and continuous training on the aerobic parameters. Can J Appl Sport Sci 1992; 17: 129–34 CAS Google Scholar
Lake M, Cavanagh P. Six weeks of training does not change running mechanics or improve running economy. Med Sci Sports Exerc 1996; 28: 860–9 PubMedCAS Google Scholar
Patton J, Vogel J. Cross-sectional and longitudinal evaluations of an endurance training program. Med Sci Sports 1977; 9: 100–3 PubMedCAS Google Scholar
Svedenhag J, Sjodin B. Physiological characteristics of elite male runners in and off-season. Can J Appl Sport Sci 1985; 10: 127–33 PubMedCAS Google Scholar
Jones AM, Carter H, Doust JH. Effect of six weeks of endurance training on parameters of aerobic fitness [abstract]. Med Sci Sports Exerc 1999; 31: S1379 Google Scholar
Bailey SP, Pate RR. Feasibility of improving running economy. Sports Med 1991; 12: 228–36 PubMedCAS Google Scholar
Coyle EF, Sidossis LS, Horowitz JF, et al. Cycling efficiency is related to the percentage of type I muscle fibers. Med Sci Sports Exerc 1992; 24: 782–8 PubMedCAS Google Scholar
Williams K, Cavanagh P. Relationship between distance running mechanics, running economy, and performance. J Appl Physiol 1987; 63: 1236–45 PubMedCAS Google Scholar
Cavanagh PR, Kram R. Mechanical and muscular factors affecting the efficiency of human movement. Med Sci Sports Exerc 1985; 17: 326–31 PubMedCAS Google Scholar
Godges JJ, MacRae H, Longdon C, et al. The effects of two stretching procedures on hip range of motion and gait economy. J Orthop Sports Phys Ther 1989; 7: 350–7 Google Scholar
Jones AM, Pringle JSM, Martin J. Running economy is negatively related to lower limb flexibility in international standard male distance runners [abstract]. J Sports Sci. In press
Gleim GW, Stachenfeld NS, Nicholas JA. The influence of flexibility on the economy of walking and jogging. J Orthop Res 1990; 8: 814–23 PubMedCAS Google Scholar
Craib MW, Mitchell VA, Fields KB, et al. The association between flexibility and running economy in sub-elite male distance runners. Med Sci Sports Exerc 1996; 28: 737–43 PubMedCAS Google Scholar
Heise GD, Martin PE. ‘Leg spring’ characteristics and the aerobic demand of running. Med Sci Sports Exerc 1998; 30: 750–4 PubMedCAS Google Scholar
Hickson RC, Dvorak BA, Gorostiaga EM, et al. Potential for strength and endurance training to amplify endurance performance. J Appl Physiol 1988; 65: 2285–90 PubMedCAS Google Scholar
Marcinik EJ, Potts J, Schlabach G, et al. Effects of strength training on lactate threshold and endurance performance. Med Sci Sports Exerc 1991; 23: 739–43 PubMedCAS Google Scholar
Bishop D, Jenkins DG. The influence of resistance training on the critical power function and time to fatigue at critical power. Aust J Sci Med Sport 1996; 4: 101–5 Google Scholar
Bishop D, Jenkins DG, Mackinnon LT, et al. The effects of strength training on endurance performance and muscle characteristics. Med Sci Sports Exerc 1999; 31 (6): 886–91 PubMedCAS Google Scholar
Paavolainen L, Hakkinen K, Hamalainen I, et al. Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol 1999; 86 (5): 1527–33 PubMedCAS Google Scholar
Sale DG. Neural adaptations to strength training. In: Komi PV, editor. Strength and power in sport. London: Blackwell Scientific Publications, 1992: 249–65 Google Scholar
Hoff J, Helgerud J, Wisloff U. Maximal strength training improves work economy in trained female cross-country skiers. Med Sci Sports Exerc 1999; 31 (6): 870–7 PubMedCAS Google Scholar
Daniels J, Daniels N. Running economy of elite male and elite female runners. Med Sci Sports Exerc 1992; 24: 483–9 PubMedCAS Google Scholar
Morgan DW, Baldini FD, Martin PE, et al. Ten kilometer performance and predicted velocity at V̇O2max among well-trained male runners. Med Sci Sports Exerc 1989; 21: 78–83 PubMedCAS Google Scholar
Babineau C, Leger L. Physiological response of 5/1 intermittent aerobic exercise and its relationship to 5-km running performance. Int J Sports Med 1996; 18: 13–9 Google Scholar
Hill DW, Rowell AL. Running velocity at V̇O2max. Med Sci Sports Exerc 1996; 28: 114–9 PubMedCAS Google Scholar
Jones AM, Doust JH. The validity of the lactate minimum test for determination of the maximal lactate steady state. Med Sci Sports Exerc 1998; 30: 1304–13 PubMedCAS Google Scholar
Noakes TD, Myburgh KH, Schall R. Peak treadmill velocity during the V̇O2max test predicts running performance. J Sports Sci 1990; 8: 35–45 PubMedCAS Google Scholar
Hawley JA, Noakes TD. Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. Eur J Appl Physiol 1992; 65: 79–83 CAS Google Scholar
Berthoin S, Manteca F, Gerbeaux M, et al. Effect of a 12-week training programme on maximal aerobic speed (MAS) and running time to exhaustion at 100 % of MAS for students aged 14 to 17 years. J Sports Med Phys Fitness 1995; 35: 251–6 PubMedCAS Google Scholar
Daniels JT, Scardina N, Hayes J, et al. Elite and subelite female middle- and long-distance runners. In: Landers DM, editor. Sport and elite performers. Champaigne (IL): Human Kinetics, 1986: 57–72 Google Scholar
Poole DC, Ward SA, Gardner G, et al. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics 1988; 31: 1265–79 PubMedCAS Google Scholar
Sloniger MA, Cureton KJ, Carrasco DI, et al. Effect of the slow-component rise in oxygen uptake on V̇O2max. Med Sci Sports Exerc 1996; 28: 72–8 PubMedCAS Google Scholar
Hill DW, Smith JC. Determination of critical power by pulmonary gas exchange. Can J Appl Physiol 1999; 24: 74–86 PubMedCAS Google Scholar
Pate RR, Branch JD. Training for endurance sport. Med Sci Sports Exerc 1992; 24: S340–3 Google Scholar
Billat VL, Renoux JC, Pinoteau J, et al. Times to exhaustion at 100 % of velocity at V̇O2max, and modelling of the time-limit/velocity relationship in elite long-distance runners. Eur J Appl Physiol 1994; 69: 271–3 CAS Google Scholar
Billat VL, Koralsztein JP. Significance of the velocity at V̇O2max and time to exhaustion at this velocity. Sports Med 1996; 22: 90–108 PubMedCAS Google Scholar
Billat VL, Petit B, Koralsztein JP. Time to exhaustion at the velocity associated with V̇O2max as a new parameter to determine a rational basis for interval training in elite distance runners. Sci Motricite 1996; 28: 13–20 Google Scholar
Hill DW, Rowell AL. Response to exercise at the velocity associated with V̇O2max. Med Sci Sports Exerc 1997; 29: 113–6 PubMedCAS Google Scholar
Billat VL, Blondel N, Berthoin S. Determination of the velocity associated with the longest time to exhaustion at maximal oxygen uptake. Eur J Appl Physiol 1999; 80: 159–61 CAS Google Scholar
Smith TP, McNaughton LR, Marshall KJ. Effects of 4-wk training using Vmax/Tmax on V̇O2max and performance in athletes. Med Sci Sports Exerc 1999; 31 (6): 892–6 PubMedCAS Google Scholar
Farrell P, Wilmore J, Coyle E, et al. Plasma lactate accumulation and distance running performance. Med Sci Sports Exerc 1979; 11: 338–44 CAS Google Scholar
Tanaka K, Matsuura Y, Kumagai S, et al. Relationship of anaerobic threshold and onset of blood lactate accumulation with endurance performance. Eur J Appl Physiol 1983; 52: 51–6 CAS Google Scholar
Fay L, Londeree B, Lafontaine T, et al. Physiological parameters related to distance running performance in female athletes. Med Sci Sports Exerc 1989; 21: 319–24 PubMedCAS Google Scholar
Yoshida T, Udo M, Iwai K, et al. Physiological characteristics related to endurance running performance in female distance runners. J Sports Sci 1993; 11: 57–62 PubMedCAS Google Scholar
Zoladz JA, Sargeant AJ, Emmerich J, et al. Changes in acid-base status of marathon runners during an incremental field test. Eur J Appl Physiol 1993; 67: 71–6 CAS Google Scholar
Davis J, Frank M, Whipp BJ, et al. Anaerobic threshold alterations caused by endurance training in middle aged men. J Appl Physiol 1979; 46: 1039–46 PubMedCAS Google Scholar
Denis C, Fouquet R, Poty P, et al. Effect of 40 weeks of endurance training on the anaerobic threshold. Int J Sports Med 1982; 3: 208–14 PubMedCAS Google Scholar
Tanaka K, Matsuura Y, Matsuzaka A, et al. A longitudinal assessment of anaerobic threshold and distance running performance. Med Sci Sports Exerc 1984; 16: 278–82 PubMedCAS Google Scholar
Henritze J, Weltman A, Schurrer RL, et al. Effects of training at and above the lactate threshold on the lactate threshold and maximal oxygen uptake. Eur J Appl Physiol 1985; 54: 84–8 CAS Google Scholar
Weltman A, Seip R, Snead D, et al. Exercise training at and above the lactate threshold in previously untrained women. Int J Sports Med 1992; 13: 257–63 PubMedCAS Google Scholar
Wells CL, Pate RR. Training for performance of prolonged exercise. Perspect Exerc Sci Sports Med 1988; 1: 357–91 Google Scholar
Yoshida T, Suda Y, Takeuchi N. Endurance training regimen based upon arterial blood lactate: effect on anaerobic threshold. Eur J Appl Physiol 1982; 41: 223–30 Google Scholar
Denis C, Dormois D, Lacour J. Endurance training, V̇O2max, and OBLA: a longitudinal study of two different age groups. Int J Sports Med 1984; 5: 167–73 PubMedCAS Google Scholar
Hurley B, Hagberg J, Allen W, et al. Effect of training on blood lactate levels during sub-maximal exercise. J Appl Physiol 1984; 56: 1260–4 PubMedCAS Google Scholar
Gaesser GA, Poole DC. Blood lactate during exercise: time course of training adaptation in humans. Int J Sports Med 1988; 9: 284–8 PubMedCAS Google Scholar
Katch V, Weltman A, Sady S, et al. Validity of the relative percent concept for equating training intensity. Eur J Appl Physiol 1978; 39: 219–27 CAS Google Scholar
Simon J, Young JL, Gutin B, et al. Lactate accumulation relative to the anaerobic and respiratory compensation thresholds. J Appl Physiol 1983; 54 (1): 13–7 PubMedCAS Google Scholar
Sahlin K. Metabolic factors in fatigue. Sports Med 1992; 13 (2): 99–107 PubMedCAS Google Scholar
Boyd AE, Giamber SR, Mager M, et al. Lactate inhibition of lipolysis in exercising man. Metabolism 1974; 23: 531–42 PubMedCAS Google Scholar
Mader A. Evaluation of the endurance performance of marathon runners and theoretical analysis of test results. J Sports Med Phys Fitness 1991; 31: 1–19 PubMedCAS Google Scholar
Weltman A, Snead D, Seip R, et al. Percentages of maximal heart rate, heart rate reserve and V̇O2max for determining endurance training intensity in male runners. Int J Sports Med 1990; 11: 218–22 PubMedCAS Google Scholar
MacDougall JD. The anaerobic threshold: its significance for the endurance athlete. Can J Sports Sci 1977; 2: 137–40 Google Scholar
Weltman A. The lactate threshold and endurance performance. Adv Sports Med Fitness 1989; 2: 91–116 Google Scholar
Hirvonen J. Background factors in endurance running. Proceedings of the XVI European Athletics Coaching Association Congress; 1991 Jan 17–21; Vierumaki, 17–21
Londeree BR. Effect of training on lactate/ventilatory thresholds: a meta-analysis. Med Sci Sports Exerc 1997; 29: 837–43 PubMedCAS Google Scholar
Sjodin B, Jacobs I, Svedenhag J. Changes in onset of blood lactate accumulation (OBLA) and muscle enzymes after training at OBLA. Eur J Appl Physiol 1982; 49: 45–57 CAS Google Scholar
Acavedo EO, Goldfarb AH. Increased training intensity effects on plasma lactate, ventilatory threshold, and endurance. Med Sci Sports Exerc 1989; 21: 563–8 Google Scholar
Keith SP, Jacobs I, McLellan TM. Adaptations to training at the individual anaerobic threshold. Eur J Appl Physiol 1992; 65: 316–23 CAS Google Scholar
Favier RJ, Constable SH, Chen M, et al. Endurance exercise training reduces lactate production. J Appl Physiol 1986; 61: 885–9 PubMedCAS Google Scholar
MacRae HSH, Dennis SC, Bosch AN, et al. Effects of training on lactate production and removal during progressive exercise in humans. J Appl Physiol 1992; 72: 1649–56 PubMedCAS Google Scholar
Donovan CM, Pagliassotti MJ. Endurance training enhances lactate clearance during hyperlactatemia. Am J Physiol 1989; 257: E782–9 Google Scholar
Freund H, Lonsdorfer J, Oyono-Enguelle S, et al. Lactate exchange and removal abilities in sickle cell patients and in untrained and trained healthy humans. J Appl Physiol 1992; 73: 2580–7 PubMedCAS Google Scholar
Bonen A, Baker SK, Hatta H. Lactate transport and lactate transporters in skeletal muscle. Can J Appl Physiol 1997; 22: 531–52 PubMedCAS Google Scholar
Costill DL, Daniels J, Evans W. Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol 1976; 40: 149–54 PubMedCAS Google Scholar
Ivy JL, Withers RT, Van Handel PJ, et al. Muscle respiratory capacity and fibre type as determinants of the lactate threshold. J Appl Physiol 1980; 48: 523–7 PubMedCAS Google Scholar
Weston AR, Karamizrak O, Smith A, et al. African runners exhibit greater fatigue resistance, lower lactate accumulation, and higher oxidative enzyme activity. J Appl Physiol 1999; 86 (3): 915–23 PubMedCAS Google Scholar
Aunola S, Rusko H. Does anaerobic threshold correlate with maximal lactate steady state? J Sports Sci 1992; 10: 309–23 PubMedCAS Google Scholar
Andersen P, Henriksson J. Training induced changes in the subgroups of human type II skeletal muscle fibres. Acta Physiol Scand 1977; 99: 123–5 PubMedCAS Google Scholar
Simoneau J-A, Lortie G, Boulay MR, et al. Human skeletal muscle fibre alteration with high intensity intermittent training. Eur J Appl Physiol 1985; 54: 250–3 CAS Google Scholar
Sale DG, MacDougall JD, Jacobs I, et al. Interaction between concurrent strength and endurance training. J Appl Physiol 1990; 68: 260–70 PubMedCAS Google Scholar
Fitts RH, Costill DL, Gardetto PR. Effect of swim exercise training on human muscle fiber function. J Appl Physiol 1989; 66: 465–75 PubMedCAS Google Scholar
Zhou MY, Klitgaard H, Saltin B, et al. Myosin heavy chain isoforms of human muscle after short-term spaceflight. J Appl Physiol 1995; 78: 1740–4 PubMedCAS Google Scholar
Ingjer F. Effects of endurance training on muscle fibre ATPase activity, capillary supply and mitochondrial content in man. J Physiol 1979; 294: 419–32 PubMedCAS Google Scholar
Green FU, Chin ER, Ball-Burnett M, et al. Increases in human skeletal muscle Na+-K+-ATPase concentration with short-term training. Am J Physiol 1993; 264: C1538–41 Google Scholar
Pilegaard H, Bangsbo J, Richter EA, et al. Lactate transport studied in sarcolemmal giant vesicles from human muscle biopsies: relation to training status. J Appl Physiol 1994; 77: 1858–62 PubMedCAS Google Scholar
McCullagh KJA, Poole RC, Halestrap AP, et al. Role of the lactate transporter (MCT1) in skeletal muscles. Am J Physiol 1996; 271 (34): E143–50 Google Scholar
Harms SJ, Hickson RC. Skeletal muscle mitochondria and myoglobin, endurance, and intensity of training. J Appl Physiol 1983; 54: 798–802 PubMedCAS Google Scholar
Schantz PG, Sjoberg B, Svedenhag J. Malate-aspartate and alpha-glycerophosphate shuttle enzyme levels in human skeletal muscle: methodological considerations and effect of endurance training. Acta Physiol Scand 1986; 128: 397–407 PubMedCAS Google Scholar
Suter E, Hoppeler H, Claassen H, et al. Ultrastructural modification of human skeletal muscle tissue with 6-month moderate-intensity exercise training. Int J Sports Med 1995; 16: 160–6 PubMedCAS Google Scholar
Gollnick PD, Saltin B. Significance of skeletal muscle oxidative enzyme enhancement with endurance training. Clin Physiol 1982; 2: 1–12 PubMedCAS Google Scholar
Wibom R, Hultman E, Johansson M, et al. Adaptation of mitochondrial ATP production in human skeletal muscle to endurance training and detraining. J Appl Physiol 1992; 73: 2004–10 PubMedCAS Google Scholar
Moritani T, Takaishi T, Matsumaato T. Determination of maximal power output at neuromuscular fatigue threshold. J Appl Physiol 1993; 74: 1729–34 PubMedCAS Google Scholar
Dudley GA, Tullson PC, Terjung RL. Influence of mitochondrial content on the sensitivity of respiratory control. J Biol Chem 1987; 262: 9109–14 PubMedCAS Google Scholar
Graham TE, Saltin B. Estimation of the mitochondrial redox state in human skeletal muscle during exercise. J Appl Physiol 1989; 66: 561–6 PubMedCAS Google Scholar
Kiens B, Essen-Gustavsson B, Christensen NJ, et al. Skeletal muscle substrate utilisation during sub-maximal exercise in man: effect of endurance training. J Physiol 1993; 469: 459–78 PubMedCAS Google Scholar
Green HJ, Smith D, Murphy P, et al. Training-induced alterations in muscle glycogen utilisation in fibre-specific types during prolonged exercise. Can J Physiol Pharmacol 1990; 68: 1372–6 PubMedCAS Google Scholar
Green HJ, Jones S, Ball-Burnett M, et al. Adaptations in muscle metabolism to prolonged voluntary exercise and training. J Appl Physiol 1995; 78: 138–45 PubMedCAS Google Scholar
Coggan AR, Kohrt WM, Spina RJ, et al. Endurance training decreases plasma glucose turnover and oxidation during moderate intensity exercise in men. J Appl Physiol 1990; 68:990–6 PubMedCAS Google Scholar
Mendenhall LA, Swanson SC, Habash DL, et al. Ten days of exercise training reduces glucose production and utilisation during moderate intensity exercise. Am J Physiol 1994; 266: E136–43 Google Scholar
Hurley BE, Nemeth PM, Martin WH. Muscle triglyceride utilisation during exercise: effect of training. J Appl Physiol 1986; 60: 562–7 PubMedCAS Google Scholar
Martin WH, Dalsky GP, Hurley BE, et al. Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am J Physiol 1993; 265: E708–14 Google Scholar
Costill DL, Fink WJ, Hargreaves M. Metabolic characteristics of skeletal muscle detraining from competitive swimming. Med Sci Sports Exerc 1985; 17: 339–43 PubMedCAS Google Scholar
Greiwe JS, Hickner RC, Hansen PA, et al. Effects of endurance exercise training on muscle glycogen accumulation in humans. J Appl Physiol 1999; 87 (1): 222–6 PubMedCAS Google Scholar
Costill DL, Gollnick PD, Janssen ED, et al. Glycogen depletion pattern in human muscle fibres during distance running. Acta Physiol Scand 1973; 89: 374–83 PubMedCAS Google Scholar
Green HJ, Jones LL, Houston ME, et al. Muscle energetics during prolonged cycling after exercise hypervolemia. J Appl Physiol 1989; 66: 622–31 PubMedCAS Google Scholar
Duan C, Winder WW. Effect of endurance training on activators of glycolysis in muscle during exercise. J Appl Physiol 1994; 76: 846–52 PubMedCAS Google Scholar
Roston WL, Whipp BJ, Davis JA, et al. Oxygen uptake kinetics and lactate concentration during exercise in humans. Am Rev Respir Dis 1987; 135: 1080–4 PubMedCAS Google Scholar
Beneke R, von Duvillard S. Determination of maximal lactate steady state response in selected sports events. Med Sci Sports Exerc 1996; 28: 241–6 PubMedCAS Google Scholar
Moritani TA, Nagata HA, deVries HA, et al. Critical power as a measure of critical work capacity and anaerobic threshold. Ergonomics 1981; 24: 339–50 PubMedCAS Google Scholar
Hughson RL, Orok CJ, Staudt LE. A high velocity running test to assess endurance running potential. Int J Sports Med 1984; 5: 23–5 PubMedCAS Google Scholar
Billat VL, Renoux JC, Pinoteau J, et al. Times to exhaustion at 90, 100 and 105 % of velocity at V̇O2max (maximal aerobic speed) and critical speed in elite long distance runners. Arch Phys Biochem 1995; 103: 129–35 CAS Google Scholar
Whipp BJ. The slow component of O2 uptake kinetics during heavy exercise. Med Sci Sports Exerc 1994; 26: 1319–26 PubMedCAS Google Scholar
Barstow TJ, Jones AM, Nguyen PH, et al. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise. J Appl Physiol 1996; 81: 1642–50 PubMedCAS Google Scholar
Gaesser GA, Poole DC. The slow component of oxygen uptake kinetics in humans. Exerc Sport Sci Rev 1996; 24: 35–70 PubMedCAS Google Scholar
Hagberg JM, Hickson RC, Ehsani AA, et al. Faster adjustment to and recovery from sub-maximal exercise in the trained state. J Appl Physiol 1980; 48: 218–24 PubMedCAS Google Scholar
Phillips SM, Green HJ, MacDonald MJ, et al. Progressive effect of endurance training on V̇O2 kinetics at the onset of sub-maximal exercise. J Appl Physiol 1995; 79: 1914–20 PubMedCAS Google Scholar
Chilibeck PD, Paterson DH, Petrella RJ, et al. The influence of age and cardiorespiratory fitness on kinetics of oxygen uptake. Can J Appl Physiol 1996; 21: 185–96 PubMedCAS Google Scholar
Hochachka PW, Matheson GO. Regulating ATP turnover rates over broad dynamic work ranges in skeletal muscles. J Appl Physiol 1992; 73: 1697–703 PubMedCAS Google Scholar
Cadefau J, Green HJ, Cusso R, et al. Coupling of muscle phosphorylation potential to glycolysis after short-term training. J Appl Physiol 1994; 76: 2586–93 PubMedCAS Google Scholar
Grassi B, Poole DC, Richardson RS, et al. Muscle O2 kinetics in humans: implications for metabolic control. J Appl Physiol 1996; 80: 988–98 PubMedCAS Google Scholar
Poole DC, Ward SA, Whipp BJ. The effects of training on the metabolic and respiratory profile of high-intensity cycle ergometer exercise. Eur J Appl Physiol 1990; 59: 421–9 CAS Google Scholar
Jenkins DG, Quigley BM. Endurance training enhances critical power. Med Sci Sports Exerc 1992; 24: 1283–9 PubMedCAS Google Scholar
Jenkins DG, Quigley BM. The influence of high intensity exercise training on the Wlim-Tlim relationship. Med Sci Sports Exerc 1993; 25: 275–82 PubMedCAS Google Scholar
Casaburi R, Storer TW, Ben-Dov I, et al. Effect of endurance training on possible determinants of V̇O2 during heavy exercise. J Appl Physiol 1987; 62: 199–207 PubMedCAS Google Scholar
Womack CJ, Davis SE, Blumer JL, et al. Slow component of O2 uptake during heavy exercise: adaptation to endurance training. J Appl Physiol 1995; 79: 838–45 PubMedCAS Google Scholar
Poole DC, Schaffartzik W, Knight DR, et al. Contribution of exercising legs to the slow component of oxygen uptake in humans. J Appl Physiol 1991; 71: 1245–53 PubMedCAS Google Scholar
Bulbulian R, Wilcox AR, Darabos BL. Anaerobic contribution to distance running performance of trained cross-country athletes. Med Sci Sports Exerc 1986; 18: 107–13 PubMedCAS Google Scholar
Houmard JA, Costill DL, Mitchell JB, et al. The role of anaerobic ability in middle distance running performance. Eur J Appl Physiol 1991; 62: 40–3 CAS Google Scholar
Fukuba Y, Whipp BJ. A metabolic limit on the ability to make up for lost time in endurance events. J Appl Physiol 1999; 87 (2): 853–61 PubMedCAS Google Scholar