- Sallis RE, Jones K. Dietary supplement use among college football players [abstract]. Med Sci Sports Exerc 1999; 31: S118
Google Scholar
- Griggs RC, Kingston W, Jozefowicz RF, et al. Effect of testosterone on muscle mass and muscle protein synthesis. J Appl Physiol 1989; 66: 498–503
PubMed CAS Google Scholar
- Nissen S, Panton L, Wilhelm R, et al. Effects of β-hydroxy-β-methylbutyrate (HMB) supplementation on strength and body composition of trained and untrained males undergoing intense resistance training [abstract]. FASEB J 1996; 10: A287
Google Scholar
- Nissen S, Panton L, Fuller Jr J, et al. Effect of feeding β-hydroxy-β-methylbutyrate (HMB) on body composition and strength of women [abstract]. FASEB J 1997; 11: A150
Google Scholar
- Van Koevering M, Nissen S. Oxidation of leucine and α-ketoisocaproate to β-hydroxy-β-methylbutyrate in vivo. Am J Physiol 1992; 262: E27–31
PubMed Google Scholar
- Hong SO, Layman DK. Effects of leucine on in vitro protein synthesis and degradation in rat skeletal muscles. J Nutr 1984; 114: 1204–12
PubMed CAS Google Scholar
- May ME, Buse MG. Effects of branch-chain amino acids on protein turnover. Diabetes Metab Rev 1989; 5: 227–45
Article PubMed CAS Google Scholar
- Nair KS, Schwartz RG, Welle S. Leucine as a regulator of whole body and skeletal muscle protein metabolism in humans. Am J Physiol 1992; 263: E928–34
PubMed CAS Google Scholar
- Sax HC, Talamini MA, Fischer JE. Clinical use of branch-chain amino acids in liver disease, sepsis, trauma and burns. Arch Surg 1986; 121: 358–66
Article PubMed CAS Google Scholar
- Tischler ME, Desautels M, Goldberg AL. Does leucine, leucyltRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J Biol Chem 1982; 257: 1613–21
PubMed CAS Google Scholar
- Mitch WE, Clark AS. Specificity of the effects of leucine and its metabolites on protein degradation in skeletal muscle. Biochem J 1984; 222: 579–86
PubMed CAS Google Scholar
- Mitch WE, Walser M, Sapir DG. Nitrogen sparing induced by leucine compared with that induced by its keto analogue, α-ketoisocaproate, in fasting obese man. J Clin Invest 1981; 67: 553–62
Article PubMed CAS Google Scholar
- Sapir DG, Stewart PM, Walser M, et al. Effects of α-ketoisocaproate and of leucine on nitrogen metabolism in postoperative patients. Lancet 1983; I (8332): 1010–4
Article Google Scholar
- Nissen S, Sharp R, Ray M, et al. Effect of leucine metabolite beta-hydroxy-beta-methylbutyrate on muscle metabolism during resistance exercise training. J Appl Physiol 1996; 81: 2095–104
PubMed CAS Google Scholar
- Vukovich MD, Stubbs NB, Bohlken RM, et al. The effect of dietary β-hydroxy-β-methylbutyrate (HMB) on strength gains and body composition changes in older adults [abstract]. FASEB J 1997; 11: A376
Google Scholar
- Gallagher PM, Carrithers JA, Godark MP, et al. β-hydroxy-β-methylbutyrate supplementation during resistance training [abstract]. Med Sci Sports Exerc 1999; 31: S402
Google Scholar
- Nissen S, Abumrad NN. Nutritional role of the leucine metabolite beta-hydroxy beta-methylbutyrate (HMB). Nutr Biochem 1997; 8: 300–11
Article CAS Google Scholar
- Nissen S, Morrical D, Fuller Jr JC. The effects of the leucine catabolite β-hydroxy-β-methylbutyrate (HMB) on the growth and health of growing lambs [abstract]. J Animal Sci 1994; 72 Suppl. 1: 243
Google Scholar
- Nissen S, Fuller Jr JC, Sell J, et al. The effect of beta-hydroxybeta-methylbutyrate on growth, mortality and carcass qualities of broiler chickens. Poultry Sci 1994; 73: 137–55
Article CAS Google Scholar
- Gatnau R, Zimmerman DR, Nissen SL, et al. Effect of excess dietary leucine and leucine catabolites on growth and immune response in weanling pigs. J Animal Sci 1995; 73: 159–65
CAS Google Scholar
- Ostaszewski P, Grzelkowska K, Balasinska B, et al. Effects of 3-hydroxy-3-methylbutyrate and 2-oxoisocaproate on body composition and cholesterol metabolism in rabbits. VII Symposium on Protein Metabolism and Nutrition; 1995; Vale de Santarim, 162
Google Scholar
- Van Koevering MT, Dolezal HG, Gill DR, et al. Effects of betahydroxy-beta-methylbutyrate on performance and carcass quality of feedlot steers. J Animal Sci 1994; 72: 1927–35
Google Scholar
- Ostaszewski P, Papet I, Nissen S, et al. Dietary supplementation of 3-hydroxy-3-methylbutyrate improves catch-up growth in underfed lambs [abstract]. Ann Zootech 1994; 43: 308
Article Google Scholar
- Papet I, Ostaszewski P, Glomot F, et al. The effect of a high dose of 3-hydroxy-3-methylbutyrate on protein metabolismin growing lambs. Br J Nutr 1997; 77: 885–96
Article PubMed CAS Google Scholar
- Talleyrand V, Zhang Z, Rathmacher J, et al. Uptake and output of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) across the leg of pigs [abstract]. FASEB J 1993; 7: A71
Google Scholar
- Rice DE, Sharp R, Rathmacher J, et al. Role of β-hydroxy β-methylbutyrate (HMB) during acute exercise-induced proteolysis [abstract]. Med Sci Sport Exerc 1995; 27: S220
Article Google Scholar
- Clarkson PM, Byrnes WC, McCormick KM, et al. Muscle soreness and serum creatine kinase activity following isometric, eccentric and concentric exercise. Int J Sports Med 1986; 7: 152–5
Article PubMed CAS Google Scholar
- Fielding RA, Manfredi TJ, Ding W, et al. Acute phase response in exercise: III. Neutrophil and IL-1β accumulation in skeletal muscle. Am J Physiol 1993; 265: R166–72
CAS Google Scholar
- Hayward R, Ferrington DA, Kochanowski LA, et al. Effects of dietary protein on enzyme activity following exercise-induced muscle injury. Med Sci Sports Exerc 1999; 31: 414–20
Article PubMed CAS Google Scholar
- Rennie MJ, Millward DJ. 3-methyl-histidine excretion and the urinary 3 methyl-histidine/creatinine ratio are poor indicators of skeletal muscle breakdown. Clin Sci 1983; 65: 217–25
PubMed CAS Google Scholar
- Sjolin J, Stjernstrom H, Henneberg S, et al. Splanchnic and peripheral release of 3-methylhistidine in relation to its urinary excretion in human infection. Metabolism 1989; 38: 23–9
Article PubMed CAS Google Scholar
- Rathmacher JA, Flakoll PJ, Nissen SL. A compartmental model of 3-methylhistidine metabolism in humans. Am J Physiol 1995; 269: E193–8
PubMed CAS Google Scholar
- Baumgarter RN. Electrical impedance and total body electrical conductivity. In: Roche AF, Heymsfield S, Lohman TG, editors. Human body composition. Champaign (IL): Human Kinetics, 1996: 79–107
Google Scholar
- Powers ME, Arnold BA. The effects of creatine supplementation and beta-hydroxy-beta-methylbutyrate supplementation on delayed onset muscle soreness [abstract]. J Athlet Training 1999; 34: S33
Google Scholar
- Byrd PL, Mehta PM, DeVita P, et al. Changes in muscle soreness and strength following downhill running: effects of creatine, HMB and betagen supplementation [abstract]. Med Sci Sports Exerc 1999; 31: S265
Google Scholar
- Panton L, Rathmacher J, Fuller J, et al. Effect of β-hydroxy-β-methylbutyrate and resistance training on strength and functional ability in the elderly [abstract]. Med Sci Sports Exerc 1998; 30: S194
Google Scholar
- Yarasheski KE, Zachwieja JJ, Bier DM. Acute effects of resistance exercise on muscle protein synthesis rate in young and elderly men and women. Am J Physiol 1993; 265: E210–4
PubMed CAS Google Scholar
- Carrithers JA, Gallagher PM, Baier SM, et al. Oral ingestion of β-hydroxy-β-methylbutyrate: effects on hematology, hepatic and renal function [abstract]. Med Sci Sports Exerc 1999; 31: S121
Google Scholar
- Hakkinen K. Neuromuscular and hormonal adaptations during strength and power training. J Sports Med Phys Fitness 1989; 29: 9–26
PubMed CAS Google Scholar
- Phillips SM, Tipton KD, Ferrando AA, et al. Resistance training reduces the acute exercise-induced increase inmuscle protein turnover. Am J Physiol 1999; 276: E118–24
PubMed CAS Google Scholar
- Clarkson PM, Nosaka K, Braun B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc 1992; 24: 512–20
PubMed CAS Google Scholar
- Newham DJ, Jones DA, Clarkson PM. Repeated high-force eccentric exercise: effects onmuscle pain and damage. J Appl Physiol 1987; 63: 1381–6
PubMed CAS Google Scholar
- Faulkner JA, Brooks SV, Opiteck JA. Injury to skeletal muscle fibres during contractions: conditions of occurrence and prevention. Phys Ther 1993; 73: 911–21
PubMed CAS Google Scholar
- Gibala MJ, Interisano SA, Tarnopolsky MA, et al. Myofibrillar disruption following acute resistance exercise in strength-trained athletes [abstract]. Can J Appl Physiol 1995; 20: 16P
Google Scholar
- Hakkinen K. Factors influencing trainability of muscular strength during short term and prolonged training. Natl Strength Cond Assoc J 1985; 7: 32–7
Article Google Scholar
- Antonio J, Street C. Glutamine: a potentially useful supplement for athletes. Can J Appl Physiol 1999; 24: 1–14
Article PubMed CAS Google Scholar
- Lefavi RG, Anderson RA, Keith RE, et al. Efficacy of chromium supplementation in athletes: emphasis on anabolism. Int J Sport Nutr 1992; 2: 111–22
PubMed CAS Google Scholar
- Kreider RB. Dietary supplements and the promotion of muscle growth with resistance exercise. Sports Med 1999; 27: 97–110
Article PubMed CAS Google Scholar
- Tarnopolsky MA, Atkinson SA, MacDougall JD, et al. Evaluation of protein requirements for trained strength athletes. J Appl Physiol 1992; 73: 1986–995
PubMed CAS Google Scholar
- Lemon PWR, Tarnopolsky MA, MacDougall JD, et al. Protein requirements andmusclemass/strength changes during intensive training in novice bodybuilders. J Appl Physiol 1992; 73: 767–75
PubMed CAS Google Scholar
- Kreider R, Ferreira M, Wilson M, et al. Effects of calcium β-HMB supplementation with or without creatine during training on body composition alterations [abstract]. FASEB J 1997; 11: A374
Google Scholar
- Almada A, Kreider R, Ferreira M, et al. Effects of calciumβ-HMB supplementation with or without creatine during training on strength and sprint capacity [abstract]. FASEB J 1997; 11: A374
Google Scholar
- Kreider RB, Ferreira M, Wilson M, et al. Effects of calcium β-hydroxy β-methylbutyrate (HMB) supplementation during resistance-training on markers of catabolism, body composition and strength. Int J Sports Med 1999; 20: 503–9
Article PubMed CAS Google Scholar
- Dohm GL. Protein nutrition for the athlete. Clin Sports Med 1984; 3: 595–604
PubMed CAS Google Scholar
- Goodman MN. Amino acid and protein metabolism. In: Horton ES, Terjung RL, editors. Exercise, nutrition and energy metabolism. New York (NY): Macmillan Publishing, 1988: 89–99
Google Scholar
- Chesley A, MacDougall JD, Tarnopolsky MA, et al. Changes in human muscle protein synthesis after resistance exercise. J Appl Physiol 1992; 73: 1383–8
PubMed CAS Google Scholar
- Houston ME. Gaining weight: the scientific basis of increasing skeletal muscle mass. Can J Appl Physiol 1999; 24: 305–16
Article PubMed CAS Google Scholar
- Demartino GN, Ordway GA. Ubiquitin-proteasome pathway of intracellular protein degradation: implications for muscle atrophy during unloading. In Holloszy JO, editor. Exercise and sport science reviews. Baltimore (MD): Williams & Wilkins, 1998: 219–52
Google Scholar
- McDonagh MJN, Davies CTM. Adaptive response of mammalian skeletal muscle to exercise with high loads. Eur J Appl Physiol 1984; 52: 139–55
Article CAS Google Scholar
- Goldberg AL, Etlinger JD, Goldspink DF, et al. Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports Exerc 1975; 7: 185–98
CAS Google Scholar
- Watt PW, Kelly FJ, Goldspink DF, et al. Exercise-induced morphological and biochemical changes in skeletalmuscles of the rat. J Appl Physiol 1982; 53: 1144–51
Article PubMed CAS Google Scholar
- Thompson HS, Scordilis SP. Ubiquitin changes in human biceps muscle following exercise-induced damage. Biochem Biophys Res Comm 1994; 204: 1193–8
Article PubMed CAS Google Scholar
- Belcastro AN, Shewchuk LD, Raj DA. Exercise-induced muscle injury: a calpain hypothesis. Mol Cell Biochem 1998; 179: 135–45
Article PubMed CAS Google Scholar
- Evans WJ, Cannon JG. The metabolic effects of exercise-induced muscle damage. In Holloszy JO, editor. Exercise and sports science reviews. Baltimore (MD): Williams & Wilkins, 1991: 99–125
Google Scholar
- Lowe DA, Warren GL, Ingalls CP, et al. Muscle function and protein metabolism after initiation of eccentric contraction-induced injury. J Appl Physiol 1995; 79: 1260–70
PubMed CAS Google Scholar
- Fielding RA, Evans WJ. Aging and the acute phase response to exercise: implications for the role of systemic factors on skeletal muscle protein turnover. Int J Sports Med 1997; 18: S22–7
Article PubMed CAS Google Scholar
- Di Pasquale M. Essential amino acids. In: Wolinsky I, editor. Amino acids and proteins for the athlete. Boca Raton (FL): CRC Press, 1997: 105–25
Google Scholar
- Chua B, Siehl DL, Morgan HE. Effect of leucine and metabolites of branched chain amino acids on protein turnover in heart. J Biol Chem 1979; 254: 8358–62
PubMed CAS Google Scholar
- Schworer CM, Shiffer KA, Mortimore GE. Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver. J Biol Chem 1981; 256: 7652–8
PubMed CAS Google Scholar
- Miotto G, Venerando R, Khurana KK, et al. Control of hepatic proteolysis by leucine and isovaleryl-L-carnitine through a common locus: evidence for a possible mechanism of recognition at the plasma membrane. J Biol Chem 1992; 267: 22066–72
PubMed CAS Google Scholar
- Chua BHL. Specificity of leucine effect on protein degradation in perfused rat heart. J Mol Cell Cardiol 1994; 26: 743–51
Article PubMed CAS Google Scholar
- Côté C, Simoneau J-A, Lagassé P, et al. Isokinetic strength training protocols: do they induce skeletal muscle fibre hypertrophy? Arch Phys Med Rehabil 1988; 69: 281–5
PubMed Google Scholar
- Hurley BF, Redmond RA, Pratley RE, et al. Effects of strength training on muscle hypertrophy and muscle cell disruption in older men. Int J Sports Med 1995; 16: 378–84
Article PubMed CAS Google Scholar
- Jones DA, Rutherford OM. Human muscle strength training: the effects of three different regimes and the nature of the resultant changes. J Physiol 1987; 391: 1–11
PubMed CAS Google Scholar
- Carey Smith R, Rutherford OM. The role of metabolites in strength training. Eur J Appl Physiol 1995; 71: 332–6
Article Google Scholar
- Phillips SM, Tipton KD, Aarsland A, et al. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol 1997; 273: E99–107
PubMed CAS Google Scholar
- Pisters PW, Pearlstone DB. Protein and amino acid metabolism in cancer cachexia: investigative techniques and therapeutic interventions. Crit Rev Clin Lab Sci 1993; 30: 223–72
Article PubMed CAS Google Scholar
- Cheng W, Phillips B, Abumrad N. Beta-hydroxy-beta-methylbutyrate increases fatty acid oxidation by muscle cells [abstract]. FASEB J 1997; 11: A381
Google Scholar
- Cheng W, Phillips B, Abumrad N. Effect of HMB on fuel utilization, membrane stability, and creatine kinase content of cultured muscle cells [abstract]. FASEB J 1998; 12: A950
Google Scholar
- Mourier A, Bigard AX, de Kerviler E, et al. Combined effects of caloric restriction and branched-chain amino acid supplementation on body composition and exercise performance in elite wrestlers. Int J Sports Med 1997; 18: 47–55
Article PubMed CAS Google Scholar
- Zhang Z, Talleyrand V, Rathmacher J, et al. Change in plasma beta-hydroxy-methylbutyrate (HMB) by feeding leucine, alphaketoisocaproate (KIC) and isovaleric acid (IVA) to pigs [abstract]. FASEB J 1993; 7: A392
Google Scholar
- Isidori A, Lo Monaco A, Cappa M. A study of growth hormone release in man after oral administration of amino acids. Curr Med Res Opin 1981; 7: 475–81
Article PubMed CAS Google Scholar
- International Olympic Committee Medical Commission. Olympic movement anti-doping guide. Lausanne: International Olympic Committee, 1999
Google Scholar
- Slater GJ, Logan PA, Boston T, et al. β-Hydroxy β-methylbutyrate (HMB) supplementation does not influence the urinary testosterone: epitestosterone ratio in healthy males. J Sci Med Sport 2000; 3: 79–83
Article PubMed CAS Google Scholar