The Epidemiology, Pathogenesis and Treatment of Pseudomonas aeruginosa Infections (original) (raw)
Bonten MJ, Bergmans DC, Speijer H, et al. Characteristics of polyclonal endemicity of P. aeruginosa aeruginosa colonization in intensive care units: implications for infection control. Am J Respir Crit Care Med 1999; 160: 1212–9 PubMedCAS Google Scholar
Pirnay JP, De Vos D, Cochez C, et al. Molecular epidemiology of Pseudomonas aeruginosa colonization in a burn unit: persistence of a multidrug-resistant clone and a silver sulfadiazine-resistant clone. J Clin Microbiol 2003; 41: 1192–202 ArticlePubMedCAS Google Scholar
Rello J, Ollendorf DA, Oster G, et al. Epidemiology and outcomes of ventilator-associated pneumonia in a large US database. Chest 2002; 122: 2115–21 ArticlePubMed Google Scholar
Kollef MH, Shorr A, Tabak YP, et al. Epidemiology and outcomes of health-care-associated pneumonia: results from a large US database of culture-positive pneumonia. Chest 2005; 128: 3854–62 ArticlePubMed Google Scholar
Osmon S, Ward S, Fraser VJ, et al. Hospital mortality for patients with bacteremia due to Staphyiococcus aureus or Pseudomonas aeruginosa. Chest 2004; 125: 607–16 ArticlePubMed Google Scholar
Harbarth S, Ferrière K, Hugonnet S, et al. Epidemiology and prognostic determinants of bloodstream infections in surgical intensive care. Arch Surg 2002; 137: 1353–9 ArticlePubMed Google Scholar
National Nosocomial Infections Surveillance System Report. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 2004; 32: 470–85 Article Google Scholar
Biedenbach DJ, Moet GJ, Jones RN. Occurrence and antimicrobial resistance pattern comparisons among bloodstream infection isolates from the SENTRY Antimicrobial Surveillance Program (1997–2002). Diagn Microbiol Infect Dis 2004; 50: 59–69 ArticlePubMedCAS Google Scholar
Gaynes R, Edwards JR, National Nosocomial Infections Surveillance System. Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis 2005; 41: 848–54 ArticlePubMed Google Scholar
Pittet D, Harbarth S, Ruef C, et al. Prevalence and risk factors for nosocomial infections in four university hospitals in Switzerland. Infect Control Hosp Epidemiol 1999; 20: 37–42 ArticlePubMedCAS Google Scholar
Lizioli A, Privitera G, Alliata E, et al. Prevalence of nosocomial infections in Italy: result from the Lombardy survey in 2000. J Hosp Infect 2003; 54: 141–8 ArticlePubMedCAS Google Scholar
Kim JM, Park ES, Jeong JS, et al. Multicenter surveillance study for nosocomial infections in major hospitals in Korea. Nosocomial Infection Surveillance Committee of the Korean Society for Nosocomial Infection Control. Am J Infect Control 2000; 28: 454–8 ArticlePubMedCAS Google Scholar
Erbay H, Yalcin AN, Serin S, et al. Nosocomial infections in intensive care unit in a Turkish university hospital: a 2-year survey. Intensive Care Med 2003; 29: 1482–8 ArticlePubMed Google Scholar
Rello J, Lorente C, Diaz E, et al. Incidence, etiology, and outcome of nosocomial pneumonia in ICU patients requiring percutaneous tracheotomy for mechanical ventilation. Chest 2003; 124: 2239–43 ArticlePubMed Google Scholar
Ibrahim EH, Ward S, Sherman G, et al. A comparative analysis of patients with early-onset vs late-onset nosocomial pneumonia in the ICU setting. Chest 2000; 117: 1434–42 ArticlePubMedCAS Google Scholar
Richards MJ, Edwards JR, Culver DH, et al. Nosocomial infections in pediatric intensive care units in the United States. National Nosocomial Infections Surveillance System. Pediatrics 1999; 103: e39 ArticlePubMedCAS Google Scholar
Lari AR, Alaghehbandan R. Nosocomial infections in an Iranian burn care center. Burns 2000; 26: 737–40 ArticlePubMedCAS Google Scholar
Erol S, Altoparlak U, Akcay MN, et al. Changes of microbial flora and wound colonization in burned patients. Burns 2004; 30: 357–61 ArticlePubMed Google Scholar
Song W, Lee KM, Kang HJ, et al. Microbiologie aspects of predominant bacteria isolated from the burn patients in Korea. Burns 2001; 27: 136–9 ArticlePubMedCAS Google Scholar
Yildirim S, Nursal TZ, Tarim A, et al. Bacteriological profile and antibiotic resistance: comparison of findings in a burn intensive care unit, other intensive care units, and the hospital services unit of a single center. J Burn Care Rehabil 2005; 26: 488–92 ArticlePubMed Google Scholar
Weiss CA, Statz CL, Dahms RA, et al. Six years of surgical wound infection surveillance at a tertiary care center: review of the microbiologie and epidemiological aspects of 20,007 wounds. Arch Surg 1999; 134: 1041–8 ArticlePubMed Google Scholar
Arias CA, Quintero G, Vanegas BE, et al. Surveillance of surgical site infections: decade of experience at a Colombian tertiary care center. World J Surg 2003; 27: 529–33 ArticlePubMed Google Scholar
Chan RK, Lye WC, Lee EJ, et al. Nosocomial urinary tract infection: a microbiological study. Ann Acad Med Singapore 1993; 22: 873–7 PubMedCAS Google Scholar
Jodrá VM, Díaz-Agero Pérez C, Sainz de Los Terreros Soler L, et al. Results of the Spanish national nosocomial infection surveillance network (VICONOS) for surgery patients from January 1997 through December 2003. Am J Infect Control 2006; 34: 134–41 ArticlePubMed Google Scholar
Bouza E, San Juan R, Muñoz P, et al. A European perspective on nosocomial urinary tract infections. I: report on the microbiology workload, etiology and antimicrobial susceptibility (ESGNI-003 study). European Study Group on Nosocomial Infections. Clin Microbiol Infect 2001; 7: 523–31 ArticlePubMedCAS Google Scholar
Taneja N, Emmanuel R, Chari PS, et al. A prospective study of hospital-acquired infections in burn patients at a tertiary care referral centre in North India. Burns 2004; 30: 665–9 ArticlePubMed Google Scholar
Lee WI, Jaing TH, Hsieh MY, et al. Distribution, infections, treatments and molecular analysis in a large cohort of patients with primary immunodeficiency diseases (PIDs) in Taiwan. J Clin Immunol 2006; 26: 274–83 ArticlePubMed Google Scholar
Chatzinikolaou I, Abi-Said D, Bodey GP, et al. Recent experience with Pseudomonas aeruginosa bacteremia in patients with cancer: retrospective analysis of 245 episodes. Arch Intern Med 2000; 160: 501–9 ArticlePubMedCAS Google Scholar
Funada H, Matsuda T. Changes in the incidence and etiological patterns of bacteremia associated with acute leukemia over a 25-year period. Intern Med 1998; 37: 1014–8 ArticlePubMedCAS Google Scholar
Vidal F, Mensa J, Martinez JA, et al. Pseudomonas aeruginosa bacteremia in patients infected with human immunodeficiency virus type 1. Eur J Clin Microbiol Infect Dis 1999; 18: 473–7 ArticlePubMedCAS Google Scholar
Afessa B, Green B. Bacterial pneumonia in hospitalized patients with HIV infection: the Pulmonary Complications, ICU Support, and Prognostic Factors of Hospitalized Patients with HIV (PIP) Study. Chest 2000; 117: 1017–22 ArticlePubMedCAS Google Scholar
Afessa B, Green W, Chiao J, et al. Pulmonary complications of HIV infection: autopsy findings. Chest 1998; 113: 1225–9 ArticlePubMedCAS Google Scholar
Lossos IS, Breuer R, Or R, et al. Bacterial pneumonia in recipients of bone marrow transplantation: a five-year prospective study. Transplantation 1995; 60: 672–8 ArticlePubMedCAS Google Scholar
Kramer MR, Marshall SE, Starnes VA, et al. Infectious complications in heart-lung transplantation: analysis of 200 episodes. Arch Intern Med 1993; 153: 2010–6 ArticlePubMedCAS Google Scholar
Revuz J, Penso D, Roujeau JC, et al. Toxic epidermal necrolysis: clinical findings and prognosis factors in 87 patients. Arch Dermatol 1987; 123: 1160–5 ArticlePubMedCAS Google Scholar
Shankar EM, Mohan V, Premalatha G, et al. Bacterial etiology of diabetic foot infections in South India. Eur J Intern Med 2005; 16: 567–70 ArticlePubMedCAS Google Scholar
Abdulrazak A, Bitar ZI, Al-Shamali AA, et al. Bacteriological study of diabetic foot infections. J Diabetes Complications 2005; 19: 138–41 ArticlePubMed Google Scholar
Burns JL, Gibson RL, McNamara S, et al. Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J Infect Dis 2001; 183: 444–52 ArticlePubMedCAS Google Scholar
Van Daele S, Vaneechoutte M, De Boeck K, et al. Survey of Pseudomonas aeruginosa genotypes in colonised cystic fibrosis patients. Eur Respir J 2006; 28: 740–7 ArticlePubMed Google Scholar
Lee B, Haagensen JA, Ciofu O, et al. Heterogeneity of biofilms formed by nonmucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J Clin Microbiol 2005; 43: 5247–55 ArticlePubMedCAS Google Scholar
Emerson J, Rosenfeld M, McNamara S, et al. Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 2002; 34: 91–100 ArticlePubMed Google Scholar
Holzmann D, Speich R, Kaufmann T, et al. Effects of sinus surgery in patients with cystic fibrosis after lung transplantation: a 10-year experience. Transplantation 2004; 77: 134–6 ArticlePubMed Google Scholar
D’Agata EM. Rapidly rising prevalence of nosocomial multidrug-resistant, gram-negative bacilli: a 9-year surveillance study. Infect Control Hosp Epidemiol 2004; 25: 842–6 ArticlePubMed Google Scholar
O’Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998; 30: 295–304 ArticlePubMed Google Scholar
Kipnis E, Sawa T, Wiener-Kronish J. Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Med Mal Infect 2006; 36: 78–91 ArticlePubMedCAS Google Scholar
Lau GW, Hassett DJ, Britigan BE. Modulation of lung epithelial functions by Pseudomonas aeruginosa. Trends Microbiol 2005; 13: 389–97 ArticlePubMedCAS Google Scholar
de Bentzmann S, Roger P, Puchelle E. Pseudomonas aeruginosa adherence to remodelling respiratory epithelium. Eur RespirJ 1996; 9: 2145–50 Article Google Scholar
Ramsey DM, Wozniak DJ. Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 2005; 56: 309–22 ArticlePubMedCAS Google Scholar
Singh PK, Schaefer AL, Parsek MR, et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 2000; 407: 762–4 ArticlePubMedCAS Google Scholar
Smith RS, Iglewski BH. P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 2003; 6: 56–60 ArticlePubMedCAS Google Scholar
Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 2003; 57: 677–701 ArticlePubMedCAS Google Scholar
Trautner BW, Darouiche RO. Catheter-associated infections: pathogenesis affects prevention. Arch Intern Med 2004; 164: 842–50 ArticlePubMed Google Scholar
Smith RS, Harris SG, Phipps R, et al. The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)homoserine lactone contributes to virulence and induces inflammation in vivo. J Bacteriol 2002; 184: 1132–9 ArticlePubMedCAS Google Scholar
Rumbaugh KP, Griswold JA, Iglewski BH, et al. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 1999; 67: 5854–62 PubMedCAS Google Scholar
Pearson JP, Feldman M, Iglewski BH, et al. Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect Immun 2000; 68: 4331–4 ArticlePubMedCAS Google Scholar
Sadikot RT, Blackwell TS, Christman JW, et al. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 2005; 171: 1209–23 ArticlePubMed Google Scholar
Hauser AR, Cobb E, Bodi M, et al. Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Crit Care Med 2002; 30: 521–8 ArticlePubMedCAS Google Scholar
Schulert GS, Feltman H, Rabin SD, et al. Secretion of the toxin ExoU is a marker for highly virulent Pseudomonas aeruginosa isolates obtained from patients with hospital-acquired pneumonia. J Infect Dis 2003; 188: 1695–706 ArticlePubMedCAS Google Scholar
Roy-Burman A, Savel RH, Racine S, et al. Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 2001; 183: 1767–74 ArticlePubMedCAS Google Scholar
Shime N, Sawa T, Fujimoto J, et al. Therapeutic administration of anti-PcrV F(ab’)(2) in sepsis associated with Pseudomonas aeruginosa. J Immunol 2001; 167: 5880–6 PubMedCAS Google Scholar
Faure K, Fujimoto J, Shimabukuro DW, et al. Effects of monoclonal anti-PcrV antibody on Pseudomonas aeruginosa-induced acute lung injury in a rat model. J Immune Based Ther Vaccines 2003; 1: 2 ArticlePubMed Google Scholar
Mariencheck WI, Alcorn JF, Palmer SM, et al. Pseudomonas aeruginosa elastase degrades surfactant proteins A and D. Am J Respir Cell Mol Biol 2003; 28: 528–37 ArticlePubMedCAS Google Scholar
Schmidtchen A, Holst E, Tapper H, et al. Elastase-producing Pseudomonas aeruginosa degrade plasma proteins and extracellular products of human skin and fibroblasts, and inhibit fibroblast growth. Microb Pathog 2003; 34: 47–55 ArticlePubMedCAS Google Scholar
Schmidtchen A, Frick IM, Andersson E, et al. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 2002; 46: 157–68 ArticlePubMedCAS Google Scholar
Engel LS, Hill JM, Caballero AR, et al. Protease IV, a unique extracellular protease and virulence factor from Pseudomonas aeruginosa. J Biol Chem 1998; 273: 16792–7 ArticlePubMedCAS Google Scholar
Carmeli Y, Troillet N, Eliopoulos GM, et al. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob Agents Chemother 1999; 43: 1379–82 PubMedCAS Google Scholar
Schweizer HP. Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Genet Mol Res 2003; 2: 48–62 PubMed Google Scholar
Tamber S, Hancock RE. On the mechanism of solute uptake in Pseudomonas. Front Biosci 2003; 8: s472–83 ArticlePubMedCAS Google Scholar
Hancock RE, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat 2000; 3: 247–55 ArticlePubMedCAS Google Scholar
Pai H, Kim J, Lee JH, et al. Carbapenem resistance mechanisms in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2001; 45: 480–4 ArticlePubMedCAS Google Scholar
Köhler T, Michea-Hamzehpour M, Epp SF, et al. Carbapenem activities against Pseudomonas aeruginosa: respective contributions of OprD and efflux systems. Antimicrob Agents Chemother 1999; 43: 424–7 PubMed Google Scholar
Sasaki M, Hiyama E, Takesue Y, et al. Clinical surveillance of surgical imipenem-resistant Pseudomonas aeruginosa infection in a Japanese hospital. J Hosp Infect 2004; 56: 111–8 ArticlePubMedCAS Google Scholar
Aeschlimann JR. The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other gram-negative bacteria: insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy 2003; 23: 916–24 ArticlePubMedCAS Google Scholar
Jalal S, Ciofu O, Hoiby N, et al. Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother 2000; 44: 710–2 ArticlePubMedCAS Google Scholar
Hanson ND. AmpC beta-lactamases: what do we need to know for the future? J Antimicrob Chemother 2003; 52: 2–4 ArticlePubMedCAS Google Scholar
Weldhagen GF, Poirel L, Nordmann P. Ambler class A extended-spectrum beta-lactamases in Pseudomonas aeruginosa: novel developments and clinical impact. Antimicrob Agents Chemother 2003; 47: 2385–92 ArticlePubMedCAS Google Scholar
Weldhagen GF. Integrons and beta-lactamases: a novel perspective on resistance. Int J Antimicrob Agents 2004; 23: 556–62 ArticlePubMedCAS Google Scholar
Lee K, Ha GY, Shin BM, et al. Metallo-beta-lactamase-producing gram-negative bacilli in Korean Nationwide Surveillance of Antimicrobial Resistance group hospitals in 2003: continued prevalence of VIM-producing Pseudomonas spp. and increase of IMP-producing Acinetobacter spp. Diagn Microbiol Infect Dis 2004; 50: 51–8 ArticlePubMedCAS Google Scholar
Lagatolla C, Tonin EA, Monti-Bragadin C, et al. Endemic carbapenem-resistant Pseudomonas aeruginosa with acquired metallo-beta-lactamase determinants in European hospital. Emerg Infect Dis 2004; 10: 535–8 ArticlePubMedCAS Google Scholar
Dubois V, Arpin C, Melon M, et al. Nosocomial outbreak due to a multiresistant strain of Pseudomonas aeruginosa P12: efficacy of cefepime-amikacin therapy and analysis of beta-lactam resistance. J Clin Microbiol 2001; 39: 2072–8 ArticlePubMedCAS Google Scholar
Deplano A, Denis O, Poirel L, et al. Molecular characterization of an epidemic clone of panantibiotic-resistant Pseudomonas aeruginosa. J Clin Microbiol 2005; 43: 1198–204 ArticlePubMedCAS Google Scholar
Chen HY, Yuan M, Livermore DM. Mechanisms of resistance to beta-lactam antibiotics amongst Pseudomonas aeruginosa isolates collected in the UK in 1993. J Med Microbiol 1995; 43: 300–9 ArticlePubMedCAS Google Scholar
Mouneimné H, Robert J, Jarlier V, et al. Type II topoisomerase mutations in ciprofloxacin-resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1999; 43: 62–6 PubMed Google Scholar
Zawacki A, O’Rourke E, Potter-Bynoe G, et al. An outbreak of Pseudomonas aeruginosa pneumonia and bloodstream infection associated with intermittent otitis externa in a healthcare worker. Infect Control Hosp Epidemiol 2004; 25: 1083–9 ArticlePubMed Google Scholar
McNeil SA, Nordstrom-Lerner L, Malani PN, et al. Outbreak of sternal surgical site infections due to Pseudomonas aeruginosa traced to a scrub nurse with onychomycosis. Clin Infect Dis 2001; 33: 317–23 ArticlePubMedCAS Google Scholar
American Thoracic Society, Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 2005; 171: 388–416 Article Google Scholar
O’Grady NP, Alexander M, Dellinger EP, et al. Guidelines for the prevention of intravascular catheter-related infections. Am J Infect Control 2002; 30: 476–89 ArticlePubMed Google Scholar
Mangram AJ, Horan TC, Pearson ML, et al. Guideline for prevention of surgical site infection, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control Practices Advisory Committee. Am J Infect Control 1999; 27: 97–132 ArticlePubMedCAS Google Scholar
Bearman GM, Munro C, Sessler CN, et al. Infection control and the prevention of nosocomial infections in the intensive care unit. Semin Respir Crit Care Med 2006; 27: 310–24 ArticlePubMed Google Scholar
Kollef MH, Sherman G, Ward S, et al. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 1999; 115: 462–74 ArticlePubMedCAS Google Scholar
Leibovici L, Shraga I, Drucker M, et al. The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J Intern Med 1998; 244: 379–86 ArticlePubMedCAS Google Scholar
Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 2004; 32: 858–73 ArticlePubMed Google Scholar
Micek ST, Lloyd AE, Ritchie DJ, et al. Pseudomonas aeruginosa bloodstream infection: importance of appropriate initial antimicrobial treatment. Antimicrob Agents Chemother 2005; 49: 1306–11 ArticlePubMedCAS Google Scholar
Paul M, Benuri-Silbiger I, Soares-Weiser K, et al. Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials. BMJ 2004; 328: 668 ArticlePubMedCAS Google Scholar
Safdar N, Handelsman J, Maki DG. Does combination antimicrobial therapy reduce mortality in gram-negative bacteraemia? A meta-analysis. Lancet Infect Dis 2004; 4: 519–27 ArticlePubMed Google Scholar
Hilf M, Yu VL, Sharp J, et al. Antibiotic therapy for Pseudomonas aeruginosa bacteremia: outcome correlations in a prospective study of 200 patients. Am J Med 1989; 87: 540–6 ArticlePubMedCAS Google Scholar
Kuikka A, Valtonen VV. Factors associated with improved outcome of Pseudomonas aeruginosa bacteremia in a Finnish university hospital. Eur J Clin Microbiol Infect Dis 1998; 17: 701–8 ArticlePubMedCAS Google Scholar
Chamot E, Boffi El Amari E, Rohner P, et al. Effectiveness of combination antimicrobial therapy for Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2003; 47: 2756–64 ArticlePubMedCAS Google Scholar
Döring G, Conway SP, Heijerman HG, et al. Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur Respir J 2000; 16: 749–67 ArticlePubMed Google Scholar
Zaoutis TE, Goyal M, Chu JH, et al. Risk factors for and outcomes of bloodstream infection caused by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species in children. Pediatrics 2005; 115: 942–9 ArticlePubMed Google Scholar
del Mar Tomas M, Cartelle M, Pertega S, et al. Hospital outbreak caused by a carbapenem-resistant strain of Acinetobacter baumannii: patient prognosis and risk-factors for colonisation and infection. Clin Microbiol Infect 2005; 11: 540–6 ArticlePubMed Google Scholar
Chastre J, Wolff M, Fagon JY, et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA 2003; 290: 2588–98 ArticlePubMedCAS Google Scholar
Cometta A, Baumgartner JD, Lew D, et al. Prospective randomized comparison of imipenem monotherapy with imipenem plus netilmicin for treatment of severe infections in nonneutropenic patients. Antimicrob Agents Chemother 1994; 38: 1309–13 ArticlePubMedCAS Google Scholar
Talan DA, Stamm WE, Hooton TM, et al. Comparison of ciprofloxacin (7 days) and trimethoprim-sulfamethoxazole (14 days) for acute uncomplicated pyelonephritis pyelonephritis in women: a randomized trial. JAMA 2000; 283: 1583–90 ArticlePubMedCAS Google Scholar
Dunbar LM, Wunderink RG, Habib MP, et al. High-dose, shortcourse levofloxacin for community-acquired pneumonia: a new treatment paradigm. Clin Infect Dis 2003; 37: 752–60 ArticlePubMedCAS Google Scholar
Kollef MH, Micek ST. Strategies to prevent antimicrobial resistance in the intensive care unit. Crit Care Med 2005; 33: 1845–53 ArticlePubMed Google Scholar
Kwa AL, Loh C, Low JG, et al. Nebulized colistin in the treatment of pneumonia due to multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Clin Infect Dis 2005; 41: 754–7 ArticlePubMed Google Scholar
Hamer DH. Treatment of nosocomial pneumonia and tracheobronchitis caused by multidrug-resistant Pseudomonas aeruginosa with aerosolized colistin. Am J Respir Crit Care Med 2000; 162: 328–30 PubMedCAS Google Scholar
Levin AS, Barone AA, Penço J, et al. Intravenous colistin as therapy for nosocomial infections caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Clin Infect Dis 1999; 28: 1008–11 ArticlePubMedCAS Google Scholar
Linden PK, Kusne S, Coley K, et al. Use of parenteral colistin for the treatment of serious infection due to antimicrobialresistant Pseudomonas aeruginosa. Clin Infect Dis 2003; 37: el54–60 Article Google Scholar
Garnacho-Montero J, Ortiz-Leyba C, Jiménez-Jiménez FJ, et al. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP. Clin Infect Dis 2003; 36: 1111–8 ArticlePubMedCAS Google Scholar
Falagas ME, Fragoulis KN, Kasiakou SK, et al. Nephrotoxicity of intravenous colistin: a prospective evaluation. Int J Antimicrob Agents 2005; 26: 504–7 ArticlePubMedCAS Google Scholar
Kasiakou SK, Michalopoulos A, Soteriades ES, et al. Combination therapy with intravenous colistin for management of infections due to multidrug-resistant gram-negative bacteria in patients without cystic fibrosis. Antimicrob Agents Chemother 2005; 49: 3136–46 ArticlePubMedCAS Google Scholar
Conway SP, Etherington C, Munday J, et al. Safety and tolerability of bolus intravenous colistin in acute respiratory exacerbations in adults with cystic fibrosis. Ann Pharmacother 2000; 34: 1238–42 ArticlePubMedCAS Google Scholar
Falagas ME, Rizos M, Bliziotis IA, et al. Toxicity after prolonged (more than four weeks) administration of intravenous colistin. BMC Infect Dis 2005; 5: 1 ArticlePubMedCAS Google Scholar
Falagas ME, Kasiakou SK. Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care 2006; 10: R27 ArticlePubMed Google Scholar
Falagas ME, Kasiakou SK. Use of international units when dosing colistin will help decrease confusion related to various formulations of the drug around the world. Antimicrob Agents Chemother 2006; 50: 2274–5 ArticlePubMedCAS Google Scholar
Jones RN, Huynh HK, Biedenbach DJ, et al. Doripenem (S-4661), a novel carbapenem: comparative activity against contemporarypathogens including bactericidal action and preliminary in vitro methods evaluations. J Antimicrob Chemother 2004; 54: 144–54 ArticlePubMedCAS Google Scholar
Fritsche TR, Stilwell MG, Jones RN. Antimicrobial activity of doripenem (S-4661): a global surveillance report (2003). Clin Microbiol Infect 2005; 11: 974–84 ArticlePubMedCAS Google Scholar
Tsuji M, Ishii Y, Ohno A, et al. In vitro and in vivo antibacterial activities of S-4661, a new carbapenem. Antimicrob Agents Chemother 1998; 42: 94–9 PubMedCAS Google Scholar
Jones RN, Huynh HK, Biedenbach DJ. Activities of doripenem (S-4661) against drug-resistant clinical pathogens. Antimicrob Agents Chemother 2004; 48: 3136–40 ArticlePubMedCAS Google Scholar
Traczewski MM, Brown SD. In vitro activity of doripenem against Pseudomonas aeruginosa and Burkholderia cepacia isolates from both cystic fibrosis and non-cystic fibrosis patients. Antimicrob Agents Chemother 2006; 50: 819–21 ArticlePubMedCAS Google Scholar
Mahadeva R, Webb K, Westerbeek RC, et al. Clinical outcome in relation to care in centres specialising in cystic fibrosis: cross sectional study. BMJ 1998; 316: 1771–5 ArticlePubMedCAS Google Scholar
Kerem E, Conway S, Elborn S, et al. Standards of care for patients with cystic fibrosis: a European consensus. J Cyst Fibros 2005; 4: 7–26 ArticlePubMed Google Scholar
Wiesemann HG, Steinkamp G, Ratjen F, et al. Placebo-controlled, double-blind, randomized study of aerosolized tobramycin for early treatment of Pseudomonas aeruginosa colonization in cystic fibrosis. Pediatr Pulmonol 1998; 25: 88–92 ArticlePubMedCAS Google Scholar
Frederiksen B, Koch C, Høiby N. Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis. Pediatr Pulmonol 1997; 23: 330–5 ArticlePubMedCAS Google Scholar
Moss RB. Long-term benefits of inhaled tobramycin in adolescent patients with cystic fibrosis. Chest 2002; 121: 55–63 ArticlePubMedCAS Google Scholar
Ramsey BW, Pepe MS, Quan JM, et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic Fibrosis Inhaled Tobramycin Study Group. N Engl J Med 1999; 340: 23–30 ArticlePubMedCAS Google Scholar
Moss RB. Administration of aerosolized antibiotics in cystic fibrosis patients. Chest 2001; 120: 107–3S Article Google Scholar
Levy J, Smith AL, Koup JR, et al. Disposition of tobramycin in patients with cystic fibrosis: a prospective controlled study. J Pediatr 1984; 105: 117–24 ArticlePubMedCAS Google Scholar
de Groot R, Hack BD, Weber A, et al. Pharmacokinetics of ticarcillin in patients with cystic fibrosis: a controlled prospective study. Clin Pharmacol Ther 1990; 47: 73–8 ArticlePubMed Google Scholar
Stephens D, Garey N, Isles A, et al. Efficacy of inhaled tobramycin in the treatment of pulmonary exacerbations in children with cystic fibrosis. Pediatr Infect Dis 1983; 2: 209–11 ArticlePubMedCAS Google Scholar
Schaad UB, Wedgwood-Krucko J, Suter S, et al. Efficacy of inhaled amikacin as adjunct to intravenous combination therapy (ceftazidime and amikacin) in cystic fibrosis. J Pediatr 1987; 111: 599–605 ArticlePubMedCAS Google Scholar