De Meirleir K, Naaktgeboren N, Van Steiteghem A, et al. Beta-endorphin and ACTH levels in peripheral blood during after aerobic and anaerobic exercise. Eur J Appl Physiol 1986; 55: 5–8 Article Google Scholar
Goldfarb AH, Hatfield BD, Armstrong D, et al. Plasma beta-en-dorphin concentration: response to intensity and duration of exercise. Med Sci Sports Exerc 1990; 22: 241–4 PubMedCAS Google Scholar
Goldfarb AH, Hatfield BD, Potts J, et al. Beta-endorphin time course response to intensity of exercise: effect of training status. Int J Sports Med 1991; 12(3): 264–8 ArticlePubMedCAS Google Scholar
McMurray RG, Forsythe WA, Mar MH, et al. Exercise intensity-related responses of β-endorphin and cathecholamines. Med Sci Sports Exerc 1987; 19: 570–4 PubMedCAS Google Scholar
Rahkila P, Hakala E, Alen M, et al. B-endorphin and corticotropin release is dependent on a threshold intensity of running exercise in male endurance athletes. Life Sci 1988; 43: 551–8 ArticlePubMedCAS Google Scholar
Gabriel H, Schwarz L, Steffen G, et al. Immunoregulatory hormones, circulating leucocyte and lymphocyte subpopulations before and after endurance exercise of different intensities. Int J Sports Med 1992; 13(5): 359–66 ArticlePubMedCAS Google Scholar
Heitkamp H-Ch, Schmid K, Scheib K. Beta-endorphin and adrenocorticotrophic hormone production during marathon and incremental exercise. Eur J Appl Physiol 1996; 66(3): 269–74 Article Google Scholar
Viru A, Tendzegolskis Z. Plasma endorphin species during dynamic exercise in humans. Clin Physiol 1995; 15(1): 73–9 ArticlePubMedCAS Google Scholar
Vissing J, Iwamoto GA, Fuchs IE, et al. Reflex control of glucoregulatory exercise responses by group III and IV muscle afferents. Am J Physiol 1994; 266(3): R824–30 PubMedCAS Google Scholar
Kraemer WJ, Fleck SJ, Callister R, et al. Training responses of plasma beta-endorphin, adrenocorticotropin, and cortisol. Med Sci Sports Exerc 1989; 21: 146–53 PubMedCAS Google Scholar
Kraemer WJ, Dziados JE, Marchitelli LJ, et al. Effect of different heavy-resistance exercise protocols on plasma beta-endorphin concentrations. J Appl Physiol 1993; 74(1): 450–9 PubMedCAS Google Scholar
Kraemer WJ, Fry AC, Warren BJ, et al. Acute hormonal responses in elite junior weighlifters. Int J Sports Med 1992; 13(2): 103–9 ArticlePubMedCAS Google Scholar
Pierce EF, Eastman NW, McGowen RW, et al. Resistance exercise decreases beta-endorphin immunoreactivity. Br J Sports Med 1994; 28(3): 164–6 ArticlePubMedCAS Google Scholar
Pierce EF, Eastman NW, Tripathi HL, et al. Plasma B-endorphinimmunoreactivity: response to resistance exercise. J Sports Sei 1993; 11: 499–502 ArticleCAS Google Scholar
Walberg-Rankin J, Franke WD, Gwazdauskas FC. Response of beta-endorphin and estradiol to resistance exercise in females during energy balance and energy restriction. Int J Sports Med 1992; 13(7): 542–7 ArticlePubMedCAS Google Scholar
Schwarz L, Kindermann W. Changes in B-endorphin levels in response to aerobic and anaerobic exercise. Sports Med 1992; 13(1): 25–36 ArticlePubMedCAS Google Scholar
Engfred K, Kjaer M, Secher NH, et al. Hypoxia and training-induced adaptation of hormonal responses to exercise in humans. Eur J Appl Physiol 1994; 68(4): 303–9 ArticleCAS Google Scholar
Rahkila P, Laatikainen T. Effect of oral contraceptives on plasma beta-endorphin and corticotropin at rest and during exercise. Gynecol Endocrinol 1992; 6(3): 163–6 ArticlePubMedCAS Google Scholar
Pierce EF, Eastman NW, Tripathi HL, et al. Beta-endorphin response to endurance exercise: relationship to exercise dependence. Percept Mot Skills 1993; 77 (3 Pt 1): 767–70 ArticlePubMedCAS Google Scholar
Goldfarb AH, Hatfield BD, Sforzo GA, et al. Serum β-endorphin levels during a graded exercise test to exhaustion. Med Sci Sports Exerc 1987; 19(2): 78–82 PubMedCAS Google Scholar
Howlett TA, Tomlin S, Ngahfoong L, et al. Release of β-endorphin and met-enkephalin during exercise in women: response to training. BMJ 1984; 288: 1950–2 ArticlePubMedCAS Google Scholar
Lobstein DB, Ismail AH. Decreases in resting plasma beta-en-dorphin/lipotropin after endurance training. Med Sci Sports Exerc 1989; 19: 161–6 Google Scholar
Walker EM, Bazzarre TL. Relationship of fasting plasma insulin and β-endorphin levels to weight loss and mealfeeding in normal and overweight females before and after a 12 week exercise program. Exerc Physiol 1986; 2: 11–23 Google Scholar
Carr DB, Bullen BA, Skrinner GS, et al. Physical conditioning facilitates the exercise-induced secretion of β-endorphin and β-lipotropin in women. N Engl J Med 1981; 305: 560–3 ArticlePubMedCAS Google Scholar
Farrell PA, Kjaer M, Bach FW, et al. Beta-endorphin and adrenocorticotropin response to supramaximal treadmill exercise in trained and untrained males. Acta Physiol Scand 1987; 130: 619–25 ArticlePubMedCAS Google Scholar
Lobstein DD, Rasmussen CL. Decreases in resting plasma betaendorphin and depression scores after endurance training. J Sports Med Phys Fitness 1991; 31(4): 543–5 PubMedCAS Google Scholar
Moughin C, Henriet MT, Baulay A, et al. Plasma levels of beta-endorphin, prolactin and gonadotropins in male athletes after an international Nordic ski race. Eur J Appl Physiol 1988; 57: 425–9 Article Google Scholar
Perhonen M, Takala T, Huttunen P, et al. Stress hormones after prolonged physical training in normo- and hypobaric conditions in rats. Int J Sports Med 1995; 16(2): 73–7 ArticlePubMedCAS Google Scholar
Hikita H, Kurita A, Takase B, et al. Usefulness of plasma beta-endorphin level, pain threshold and autonomie function in assessing silent myocardial ischemia in patients with and without diabetes mellitus. Am J Cardiol 1993; 72(2): 140–3 ArticlePubMedCAS Google Scholar
Wanke T, Auinger M, Formanek D, et al. Defective endogenousopioid response to exercise in type I diabetic patients. Metabolism 1996; 45(2): 137–42 ArticlePubMedCAS Google Scholar
Foreman LJ, Estilow S, Lewis M, et al. Streptozocin diabetesalters immunoreactive β-endorphin levels and pain perception after 8 weeks in female rats. Diabetes 1986; 35: 1309–13 Article Google Scholar
Foreman LJ, Estilow S, Mead J, et al. Eight weeks of streptozocin-induced diabetes influences the effects of cold stress on immunoreactive beta-endorphin levels in female rats. Horm Metab Res 1988; 10: 555–8 Article Google Scholar
Timmers K, Vogels NR, Zalenshi C, et al. Altered β-endorphin, met- and leu-enkephalins, and enkephalin-containing peptides in pancreas and pituitary of genetically obese diabetic (db/db) mice during development of diabetic syndrome. Diabetes 1986; 35: 1143–51 ArticlePubMedCAS Google Scholar
Morley GK, Mooradian AD, Levine AS, et al. Mechanism of pain in diabetic peripheral neuropathy. Am J Med 1984; 77: 79–82 ArticlePubMedCAS Google Scholar
Solerte SB, Fioravanti M, Petraglia F, et al. Plasma β-endorphin, free fatty acids and blood lipid changes in type 2 (non-insulin dependent) diabetic patients. J Endocrinol Invest 1988; 11: 417–28 Google Scholar
Letizia C, Barilla F, Cerci S, et al. Beta-endorphin and pro-opiomelanocortin correlates peptides response in suspected and confirmed ischemie heart disease during exercise. Acta Cardiol 1996; 51(1): 27–36 PubMedCAS Google Scholar
Oldroyd KG, Gray CE, Carter R, et al. Activation and inhibition of the endogenous opioid system in human heart failure. Br Heart J 1995; 73(1): 41–8 ArticlePubMedCAS Google Scholar
Perna GP, Modini S, Valle G, et al. Plasma levels of basal beta-endorphin and after effort in patients with severe left ventricular dysfunction and heart failure. J Ital Cardiol 1994; 24(9): 1077–85 CAS Google Scholar
Wallbridge DR, Maclntyre HE, Gray CE, et al. Increase in plasma beta-endorphin precedes vasodepressor syncope. Br Heart J 1994; 71(6): 597–9 ArticlePubMedCAS Google Scholar
Karpov RS, Mordovin VF, Fedorov AI, et al. Diagnostic usefulness of ECG changes in response to exercise in women with various forms of ischemic disease. Kardiologiia 1991; 31(9): 21–5 PubMedCAS Google Scholar
Huang L, Zhu S. The role of beta-endorphin and pain perception in silent myocardial ischemia. Chung Hua Hsin Hsueh Kuan Ping Tsa Chih 1991; 19(1): 3–6 PubMedCAS Google Scholar
Kurita A, Takase B, Uehata A, et al. Difference in plasma beta-endorphin and bradykinin levels between patients with painless or with painful myocardial ischemia. Am Heart J 1992; 23(2): 304–9 Article Google Scholar
Marchant B, Umachandran V, Wilkinson P, et al. Reexamination of the role of endogenous opiates in silent myocardial ischemia. J Am Coll Cardiol 1994; 23(3): 645–51 ArticlePubMedCAS Google Scholar
Miller PF, Light KC, Bragdon EE, et al. Beta-endorphin response to exercise and mental stress in ischemie heart disease. J Psychosom Res 1993; 37(5): 455–65 ArticlePubMedCAS Google Scholar
Sena AC, Maixner W, Ballenger MN, et al. The relationship between plasma beta-endorphin, opioid receptor activity, and silent myocardial ischemia. Clin J Pain 1992; 8(4): 307–16 ArticlePubMedCAS Google Scholar
Solomon P, Mazurek W. Levels of β-endorphin in patients with silent myocardial ischemia. Pol Arch Med Wewn 1994; 91(6): 446–50 Google Scholar
Wu L. Assessment of plasma catecholamine and beta-endorphin contents in patients with silent myocardial ischemia and angina pectoris. Chung Hua Hsin Hsueh Kuan Ping Tsa Chih 1992; 20(2): 90–2 PubMedCAS Google Scholar
Light KC, Herbet MC, Bragdon EE, et al. Depression and type A behavior pattern in patients with coronary artery disease: relationship to painful versus silent myocardial ischemia and beta-endorphin responses during exercise. Psychosom Med 1991; 53(6): 669–83 PubMedCAS Google Scholar
Giugliano D, Torella R, Lefebvre PJ, et al. Opioid peptides and metabolic regulation. Diabetologia 1988; 31: 3–15 PubMedCAS Google Scholar
Taylor DV, Boyajian JG, James N, et al. Acidosis stimulates beta-endorphin release during exercise. J Appl Physiol 1994; 77(4): 1913–8 PubMedCAS Google Scholar
Stein C. Opioid analgesia at peripheral sites. In: Almedia OFX, Shippenberg TS, editors. Neurobiology of opioids. Berlin: Springer Verlag, 1991: 273–85 Chapter Google Scholar
Brooks S, Burrin J, Cheetham ME, et al. The responses of the catecholamines and beta-endorphin to brief maximal exercise in man. Eur J Appl Physiol 1988; 57: 220–34 Article Google Scholar
Dearman J, Francis KT. Plasma levels of catecholamines, cortisol and beta-endorphin in male athletes after running 26.2, 6, and 2 miles. J Sports Med 1983; 23: 30–8 CAS Google Scholar
Angelopoulos TJ, Denys BG, Weikart C, et al. Endogenous opioids may modulate catecholamine secretion during high intensity exercise. Eur J Appl Physiol 1995; 70: 195–9 ArticleCAS Google Scholar
Fatouros IG, Goldfarb AH, Jamurtas AZ. Low carbohydratediet induces changes in central and peripheral beta-endorphins. Nutr Res 1995; 15(11): 1683–94 ArticleCAS Google Scholar
Bruni J, Watkins W, Yen S. β-Endorphin in the human pancreas. J Clin Endocrinol Metab 1979; 49: 649–51 ArticlePubMedCAS Google Scholar
Angelopoulos TJ, Robertson RJ, Goss FL, et al. Insulin and glucagon immunoreactivity during high-intensity exercise under opiate blockade. Eur J Appl Physiol 1997; 75: 132–5 ArticleCAS Google Scholar
Farrell PA, Ebert TJ, Kampine JP. Naloxone augments muscle sympathetic nerve activity during isometric exercise in humans. Am J Physiol 1991; 242: E317–E22 Google Scholar
Farrell PA, Gustafson AB, Garthwaite TL, et al. Influence of endogenous opioids on the response of selected hormones to exercise in humans. J Appl Physiol 1986; 61: 1051–7 PubMedCAS Google Scholar
Hickey MS, Trappe SW, Biostein AC, et al. Opioid antagonismalters blood glucose homeostasis during exercise in humans. J Appl Physiol 1994; 76: 2452–60 PubMedCAS Google Scholar
Imai N, Stone CK, Woolf PD, et al. Effects of naloxone on systemic and regional hemodynamic responses to exercise in dogs. J Appl Physiol 1988; 64: 1493–8 PubMedCAS Google Scholar
Staessen J, Fiocchi R, Bouillon R, et al. Effects of opioid antagonism on the hemodynamic and hormonal responses to exercise. Clin Sci 1988; 75: 293–300 PubMedCAS Google Scholar
Bramnert M, Hokfelt B. Lack of effect of naloxone in a moderate dose on the exercise-induced increase in blood pressure, heart rate, plasma catecholamines, plasma renin activity and plasma aldosterone in healthy males. Clin Sci 1985; 68: 185–91 PubMedCAS Google Scholar
Farrell PA, Sonne B, Milines KJ, et al. Stimulatory role of endogenous opioids on postexercise insulin secretion in rats. J Appl Physiol 1988; 65: 744–9 PubMedCAS Google Scholar
McMurray RG, Newbould E, Bouloux P, et al. High-dose naloxone modifies cardiovascular and neuroendocrine function in ambulant subjects. Psychoneuroendocrinology 1991: 16: 447–55 ArticlePubMedCAS Google Scholar
Viveros OH, Diliberto EJ, Hazum E, et al. Opiate-like material in the adrenal medulla: evidence for storage and secretion with catecholamines. Mol Pharmacol 1979: 16: 1101–8 PubMedCAS Google Scholar
Feldman M, Kiser R, Unger R, et al. Beta-endorphin and the endocrine pancreas: studies in healthy and diabetic human beings. N Engl J Med 1983; 308: 349–53 ArticlePubMedCAS Google Scholar
Ipp E, Dobbs RE, Unger RH. Morphine and B-endorphin influence the secretion of the endocrine pancreas. Nature 1978; 276: 190–1 ArticlePubMedCAS Google Scholar
Reid R, Sandier J, Yen S. β-Endorphin stimulates the secretion of insulin and glucagon in humans. J Clin Endocrinol Metab 1981; 52: 592–4 ArticlePubMedCAS Google Scholar
Fatouros IG, Goldfarb AH, Jamurtas AZ, et al. Beta-endorphin infusion effects on glucose and hormonal homeostasis during exercise [abstract]. Med Sci Sports Exerc 1996; 28(5): S76 Google Scholar
Corio V, Volpi R, Maffei ML, et al. Opioid modulation of the gamma-aminobutyric acid-controlled inhibition of exercise-stimulated growth hormone and prolactin secretion in normal men. Eur J Endocrinol 1994; 131: 50–5 Article Google Scholar
Vettor R, Pagano C, Fabris R, et al. Lipolytic effect of beta-endorphin in human fat cells. Life Sci 1993: 52: 657–61 ArticlePubMedCAS Google Scholar
Sforzo GA. Opioids and exercise: an update. Sports Med 1988; 7(2): 109–24 Article Google Scholar
Richter WO, Naude RJ, Oelofsen W, et al. In vitro lipolytic activity of beta-endorphin and its partial sequences. Endocrinology 1987; 120: 1472–6 ArticlePubMedCAS Google Scholar
Vettor R, Manno M, De Carlo E, et al. Evidence for an involvement of opioid peptides in exercise-induced lipolysis in rats. Horm Metab Res 1987; 19: 282–3 ArticlePubMedCAS Google Scholar