Hormonal Responses and Adaptations to Resistance Exercise and Training (original) (raw)
Kraemer WJ, Ratamess NA. Physiology of resistance training: current issues. Orthop Phys Ther Clin North Am Exerc Technol 2000; 9: 467–513 Google Scholar
Kraemer WJ, Ratamess NA. Endocrine responses and adaptations to strength and power training. In: Komi PV, editor. Strength and power in sport. 2nd ed. Malden (MA): Blackwell Scientific Publications, 2003: 361–86 Chapter Google Scholar
Kraemer WJ, Ratamess NA, Rubin MR. Basic principles of resistance exercise. In: Jackson CR, editor. Nutrition and the strength athlete. Boca Raton (FL): CRC Press, 2000 Google Scholar
Sale DG. Neural adaptations to resistance training. Med Sci Sports Exerc 1988; 20 Suppl.: S135–45 Article Google Scholar
Hickson RC, Hidaka K, Foster C, et al. Successive time courses of strength development and steroid hormone responses to heavy-resistance training. J Appl Physiol 1994; 76: 663–70 PubMedCAS Google Scholar
Chandler RM, Byrne HK, Patterson JG, et al. Dietary supplements affect the anabolic hormones after weight-training exercise. J Appl Physiol 1994; 76: 839–45 PubMedCAS Google Scholar
Weiss LW, Cureton KJ, Thompson FN. Comparison of serum testosterone and androstenedione responses to weight lifting in men and women. Eur J Appl Physiol 1983; 50: 413–9 ArticleCAS Google Scholar
Häkkinen K, Pakarinen A. Acute hormonal responses to heavy resistance exercise in men and women at different ages. Int J Sports Med 1995; 16: 507–13 ArticlePubMed Google Scholar
Kraemer WJ, Volek JS, Bush JA, et al. Hormonal responses to consecutive days of heavy-resistance exercise with or without nutritional supplementation. J Appl Physiol 1998; 85: 1544–55 PubMedCAS Google Scholar
Kraemer WJ, Fleck SJ, Maresh CM, et al. Acute hormonal responses to a single bout of heavy resistance exercise in trained power lifters and untrained men. Can J Appl Physiol 1999; 24: 524–37 ArticlePubMedCAS Google Scholar
Tremblay MS, Copeland JL, Van Helder W. Effect of training status and exercise mode on endogenous steroid hormones in men. J Appl Physiol 2003; 96: 531–9 ArticlePubMed Google Scholar
Ahtiainen JP, Pakarinen A, Kraemer WJ, et al. Acute hormonal and neuromuscular responses and recovery to forced vs maximum repetitions multiple resistance exercises. Int J Sports Med 2003; 24: 410–8 ArticlePubMedCAS Google Scholar
Cumming DC, Wall SR, Galbraith MA, et al. Reproductive hormone responses to resistance exercise. Med Sci Sports Exerc 1987; 19: 234–8 PubMedCAS Google Scholar
Nindl BC, Kraemer WJ, Gotshalk LA, et al. Testosterone responses after resistance exercise in women: influence of regional fat distribution. Int J Sport Nutr Exerc Metab 2001; 11: 451–65 PubMedCAS Google Scholar
Jezova D, Vigas M. Testosterone response to exercise during blockade and stimulation of adrenergic receptors in man. Horm Res 1981; 15: 141–7 ArticlePubMedCAS Google Scholar
Lu SS, Lau CP, Tung YF, et al. Lactate and the effect of exercise on testosterone secretion: evidence for the involvement of a cAMP-mediated mechanism. Med Sci Sports Exerc 1997; 29: 1048–54 ArticlePubMedCAS Google Scholar
Lin H, Wang SW, Wang RY, et al. Stimulatory effect of lactate on testosterone production by rat Leydig cells. J Cell Biochem 2001; 83: 147–54 ArticlePubMedCAS Google Scholar
Fry AC, Kraemer WJ. Resistance exercise overtraining and overreaching: neuroendocrine responses. Sports Med 1997; 23: 106–29 ArticlePubMedCAS Google Scholar
Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocrine Rev 1998; 19: 717–97 ArticleCAS Google Scholar
Nagaya N, Herrera AA. Effects of testosterone on synaptic efficacy at neuromuscular junctions in asexually dimorphic muscle of male frogs. J Physiol 1995; 483: 141–53 PubMedCAS Google Scholar
Brooks BP, Merry DE, Paulson HL, et al. A cell culture model for androgen effects in motor neurons. J Neurochem 1998; 70: 1054–60 ArticlePubMedCAS Google Scholar
Durand RJ, Castracane VD, Hollander DB, et al. Hormonal responses from concentric and eccentric muscle contractions. Med Sci Sports Exerc 2003; 35: 937–43 ArticlePubMedCAS Google Scholar
Häkkinen K, Pakarinen A, Alen M, et al. Relationships between training volume, physical performance capacity, and serum hormone concentrations during prolonged training in elite weight lifters. Int J Sports Med 1987; 8 Suppl.: 61–5 ArticlePubMed Google Scholar
Häkkinen K, Pakarinen A, Alen M, et al. Neuromuscular and hormonal responses in elite athletes to two successive strength training sessions in one day. Eur J Appl Physiol 1988; 57: 133–9 Article Google Scholar
Kraemer WJ, Häkkinen K, Newton RU, et al. Effects of heavy-resistance training on hormonal response patterns in younger vs older men. J Appl Physiol 1999; 87: 982–92 PubMedCAS Google Scholar
Häkkinen K, Pakarinen A, Kraemer WJ, et al. Basal concentrations and acute responses of serum hormones and strength development during heavy resistance training in middle-aged and elderly men and women. J Gerontol A Biol Sci Med Sci 2000; 55: B95–105 Article Google Scholar
Volek JS, Kraemer WJ, Bush JA, et al. Testosterone and cortisol in relationship to dietary nutrients and resistance exercise. J Appl Physiol 1997; 8: 49–54 Google Scholar
Hansen S, Kvorning T, Kjaer M, et al. The effect of short-term strength training on human skeletal muscle: the importance of physiologically elevated hormone levels. Scand J Med Sci Sport 2001; 11: 347–54 ArticleCAS Google Scholar
Kraemer WJ, Marchitelli L, Gordon SE, et al. Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol 1990; 69: 1442–50 PubMedCAS Google Scholar
Kraemer WJ, Gordon SE, Fleck SJ, et al. Endogenous anabolic hormonal and growth factor responses to heavy resistance exercise in males and females. Int J Sports Med 1991; 12: 228–35 ArticlePubMedCAS Google Scholar
Raastad T, Bjoro T, Hallen J. Hormonal responses to high- and moderate-intensity strength exercise. Eur J Appl Physiol 2000; 82: 121–8 ArticlePubMedCAS Google Scholar
Schwab R, Johnson GO, Housh TJ, et al. Acute effects of different intensities of weight lifting on serum testosterone. Med Sci Sports Exerc 1993; 25: 1381–5 PubMedCAS Google Scholar
Häkkinen K, Pakarinen A. Acute hormonal responses to two different fatiguing heavy-resistance protocols in male athletes. J Appl Physiol 1993; 74: 882–7 PubMed Google Scholar
Bosco C, Colli R, Bonomi R, et al. Monitoring strength training: neuromuscular and hormonal profile. Med Sci Sports Exerc 2000; 32: 202–8 PubMedCAS Google Scholar
Ratamess NA, Kraemer WJ, Volek JS, et al. Effects of heavy resistance exercise volume on post-exercise androgen receptor content in resistance-trained men. J Steroid Biochem Molec Biol 2005 93: 35–42 ArticlePubMedCAS Google Scholar
Gotshalk LA, Loebel CC, Nindl BC, et al. Hormonal responses to multiset versus single-set heavy-resistance exercise protocols. Can J Appl Physiol 1997; 22: 244–55 ArticlePubMedCAS Google Scholar
Kraemer WJ, Staron RS, Hagerman FC, et al. The effects of short-term resistance training on endocrine function in men and women. Eur J Appl Physiol 1998; 78: 69–76 ArticleCAS Google Scholar
Kraemer WJ, Fry AC, Warren BJ, et al. Acute hormonal responses in elite junior weightlifters. Int J Sports Med 1992; 13: 103–9 ArticlePubMedCAS Google Scholar
Fahey TD, Rolph R, Moungmee P, et al. Serum testosterone, body composition, and strength of young adults. Med Sci Sports Exerc 1976; 8: 31–4 CAS Google Scholar
Ballor DL, Becque MD, Katch VL. Metabolic responses during hydraulic resistance exercise. Med Sci Sports Exerc 1987; 19: 363–7 PubMedCAS Google Scholar
Guezennec Y, Leger L, Lhoste F, et al. Hormone and metabolite response to weight-lifting training sessions. Int J Sports Med 1986; 7: 100–5 ArticlePubMedCAS Google Scholar
Kraemer WJ, Volek JS, French DN, et al. The effects of L-carnitine L-tartrate supplementation on hormonal responses to resistance exercise and recovery. J Strength Cond Res 2003; 17: 455–62 PubMed Google Scholar
Häkkinen K, Pakarinen A, Alen M, et al. Daily hormonal and neuromuscular responses to intensive strength training in 1 week. Int J Sports Med 1988; 9: 422–8 ArticlePubMed Google Scholar
Craig BW, Brown R, Everhart J. Effects of progressive resistance training on growth hormone and testosterone levels in young and elderly subjects. Mech Ageing Dev 1989; 49: 159–69 ArticlePubMedCAS Google Scholar
Ahtiainen JP, Pakarinen A, Alen M, et al. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol 2003; 89: 555–63 ArticlePubMedCAS Google Scholar
Kraemer WJ, Fleck SJ, Dziados JE, et al. Changes in hormonal concentrations after different heavy-resistance exercise protocols in women. J Appl Physiol 1993; 75: 594–604 PubMedCAS Google Scholar
Stoessel L, Stone MH, Keith R, et al. Selected physiological, psychological and performance characteristics of national-caliber United States women weightlifters. J Appl Sport Sci Res 1991; 5: 87–95 Google Scholar
Alen M, Pakarinen A, Häkkinen K, et al. Responses of serum androgenic-anabolic and catabolic hormones to prolonged strength training. Int J Sports Med 1988; 9: 229–33 ArticlePubMedCAS Google Scholar
Potteiger JA, Judge LW, Cerny JA, et al. Effects of altering training volume and intensity on body mass, performance, and hormonal concentrations in weight-event athletes. J Strength Cond Res 1995; 9: 55–8 Google Scholar
Häkkinen K, Pakarinen A, Kyrolainen H, et al. Neuromuscular adaptations and serum hormones in females during prolonged power training. Int J Sports Med 1990; 11: 91–8 ArticlePubMed Google Scholar
Häkkinen K, Pakarinen A, Kallinen M. Neuromuscular adaptations and serum hormones in women during short-term intensive strength training. Eur J Appl Physiol 1992; 64: 106–11 Article Google Scholar
Tsolakis C, Messinis D, Stergioulas A, et al. Hormonal responses after strength training and detraining in prepubertal and pubertal boys. J Strength Cond Res 2000; 14: 399–404 Google Scholar
Häkkinen K, Pakarinen A, Alen M, et al. Neuromuscular and hormonal adaptations in athletes to strength training in two years. J Appl Physiol 1988; 65: 2406–12 PubMed Google Scholar
Staron RS, Karapondo DL, Kraemer WJ, et al. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol 1994; 76: 1247–55 PubMedCAS Google Scholar
Marx JO, Ratamess NA, Nindl BC, et al. Low-volume circuit versus high-volume periodized resistance training in women. Med Sci Sports Exerc 2001; 33: 635–43 ArticlePubMedCAS Google Scholar
Häkkinen K, Pakarinen A, Alen M, et al. Serum hormones during prolonged training of neuromuscular performance. Eur J Appl Physiol 1985; 53: 287–93 Article Google Scholar
Reaburn P, Logan P, Mackinnon L. Serum testosterone response to high-intensity resistance training in male veteran sprint runners. J Strength Cond Res 1997; 11: 256–60 Google Scholar
McCall GE, Byrnes WC, Fleck SJ, et al. Acute and chronic hormonal responses to resistance training designed to promote muscle hypertrophy. Can J Appl Physiol 1999; 24: 96–107 ArticlePubMedCAS Google Scholar
Raastad T, Glomsheller T, Bjoro T, et al. Changes in human skeletal muscle contractility and hormone status during 2 weeks of heavy strength training. Eur J Appl Physiol 2001; 84: 54–63 ArticlePubMedCAS Google Scholar
Dorlochter M, Astrow SH, Herrera AA. Effects of testosterone on a sexually dimorphic frog muscle: repeated in vivo observations and androgen receptor distribution. J Neurobiol 1994; 25: 897–916 ArticlePubMedCAS Google Scholar
Bricout VA, Serrurier BD, Bigard AX, et al. Effects of hindlimb suspension and androgen treatment on testosterone receptors in rat skeletal muscles. Eur J Appl Physiol 1999; 79: 443–8 ArticleCAS Google Scholar
Bricout VA, Germain PS, Serrurier BD, et al. Changes in testosterone muscle receptors: effects of an androgen treatment on physically trained rats. Cell Mol Biol 1994; 40: 291–4 PubMedCAS Google Scholar
Lu Y, Tong Q, He L. The effects of exercise on the androgen receptor binding capacity and the level of testosterone in the skeletal muscle. Zhongguo Ying Yong Sheng Li Xue Za Zhi 1997; 13: 198–201 PubMedCAS Google Scholar
Deschenes MR, Maresh CM, Armstrong LE, et al. Endurance and resistance exercise induce muscle fiber type specific responses in androgen binding capacity. J Steroid Biochem Mol Biol 1994; 50: 175–9 ArticlePubMedCAS Google Scholar
Inoue K, Yamasaki S, Fushiki T, et al. Rapid increase in the number of androgen receptors following electrical stimulation of the rat muscle. Eur J Appl Physiol 1993; 66: 134–40 ArticleCAS Google Scholar
Inoue K, Yamasaki S, Fushiki T, et al. Androgen receptor antagonist suppresses exercise-induced hypertrophy of skeletal muscle. Eur J Appl Physiol 1994; 69: 88–91 ArticleCAS Google Scholar
Bamman MM, Shipp JR, Jiang J, et al. Mechanical load increases muscle IGF-1 and androgen receptor mRNA concentrations in humans. Am J Physiol 2001; 280: E383–90 Google Scholar
Kadi F, Bonnerud P, Eriksson A, et al. The expression of androgen receptors in human neck and limb muscles: effects of training and self-administration of androgenic-anabolic steroids. Histochem Cell Biol 2000; 113: 25–9 ArticlePubMedCAS Google Scholar
Biolo G, Maggi SP, Williams BD, et al. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol 1995; 268: E514–20 Google Scholar
Busso T, Häkkinen K, Pakarinen A, et al. Hormonal adaptations and modeled responses in elite weightlifters during 6 weeks of training. Eur J Appl Physiol 1992; 64: 381–6 ArticleCAS Google Scholar
Häkkinen K, Pakarinen A. Serum hormones in male strength athletes during intensive short term strength training. Eur J Appl Physiol 1991; 63: 191–9 Article Google Scholar
Broeder CE. Oral andro-related prohormone supplementation: do the potential risks outweigh the benefits? Can J Appl Physiol 2003; 28: 102–16 ArticlePubMedCAS Google Scholar
Delbeke FT, Van Eenoo P, Van Thuyne W, et al. Prohormones and sport. J Steroid Biochem 2003; 83: 245–51 Google Scholar
King DS, Sharp RL, Vukovich MD, et al. Effect of oral androstenedione on serum testosterone and adaptations to resistance training in young men: a randomized controlled trial. JAMA 1999; 281: 2020–8 ArticlePubMedCAS Google Scholar
Ballantyne CS, Phillips SM, MacDonald JR, et al. The acute effects of androstenedione supplementation in healthy young males. Can J Appl Physiol 2000; 25: 68–78 ArticlePubMedCAS Google Scholar
Wallace MB, Lim J, Cutler A, et al. Effects of dehydroepiandrosterone vs androstenedione supplementation in men. Med Sci Sports Exerc 1999; 31: 1788–92 ArticlePubMedCAS Google Scholar
Brown GA, Vukovich MD, Sharp RL, et al. Effect of oral DHEA on serum testosterone and adaptations to resistance training. J Appl Physiol 1999; 87: 2274–83 PubMedCAS Google Scholar
Leder BZ, Longscope C, Catlin DH, et al. Oral androstenedione administration and serum testosterone concentrations in young men. JAMA 2000; 283: 779–82 ArticlePubMedCAS Google Scholar
Leder BZ, Leblanc KM, Longscope C, et al. Effects of oral androstenedione administration on serum testosterone and estradiol levels in postmenopausal women. J Clin Endocrinol Metab 2002; 87: 5449–54 ArticlePubMedCAS Google Scholar
Brown GA, Vukovich MD, Martini ER, et al. Endocrine and lipid responses to chronic androstenediol-herbal supplementation in 30 to 58 year old men. J Am Coll Nutr 2001; 20: 520–8 PubMedCAS Google Scholar
Earnest CP, Olson MA, Broeder CE, et al. In vivo 4-androstene-3,17-dione and 4-androstene-3β,17β-diol supplementation in young men. Eur J Appl Physiol 2000; 81: 229–32 ArticlePubMedCAS Google Scholar
Brown GA, Vukovich MD, Reifenrath TA, et al. Effects of anabolic precursors on serum testosterone concentrations and adaptations to resistance training in young men. Int J Sport Nutr Exerc Metab 2000; 10: 340–59 PubMedCAS Google Scholar
Leder BZ, Catlin DH, Longscope C, et al. Metabolism of orally administered androstenedione in young men. J Clin Endocrinol Metab 2001; 86: 3654–8 ArticlePubMedCAS Google Scholar
Brown GA, Martini ER, Roberts BS, et al. Acute hormonal response to sublingual androstenediol intake in young men. J Appl Physiol 2002; 92: 142–6 PubMedCAS Google Scholar
Broeder CE, Quindry J, Brittingham K, et al. The Andro project: physiological and hormonal influences of androstenedione supplementation in men 35 to 65 years old participating in a high-intensity resistance training program. Arch Intern Med 2000; 160: 3093–104 ArticlePubMedCAS Google Scholar
Van Gammeren D, Falk D, Antonio J. The effects of supplementation with 19-nor-4-androstene-3,17-dione and 19-nor-4-androstene-3,17-diol on body composition and athletic performance in previously weight-trained male athletes. Eur J Appl Physiol 2001; 84: 426–31 ArticlePubMed Google Scholar
Van Gammeren D, Falk D, Antonio J. Effects of norandrostenedione and norandrostenediol in resistance-trained men. Nutrition 2002; 18: 734–7 ArticlePubMed Google Scholar
Rasmussen BB, Volpi E, Gore DC, et al. Androstenedione does not stimulate muscle protein anabolism in young healthy men. J Clin Endocrinol Metab 2000; 85: 55–9 ArticlePubMedCAS Google Scholar
Longscope C. Dehydroepiandrosterone metabolism. J Endocrinol 1996; 150: S125–7 Google Scholar
Aizawa K, Akimoto T, Inoue H, et al. Resting serum dehydroepiandrosterone sulfate level increases after 8-week resistance training among young females. Eur J Appl Physiol 2003; 90: 575–80 ArticlePubMedCAS Google Scholar
Kahn SM, Hryb DJ, Nakhla AM, et al. Sex hormone-binding globulin is synthesized in target cells. J Endocrinol 2002; 175: 113–20 ArticlePubMedCAS Google Scholar
Kraemer WJ, Mazzetti SA. Hormonal mechanisms related to the expression of muscular strength and power. In: Komi PV, editor. Strength and power in sport. 2nd ed. Malden (MA): Blackwell Science, 2003: 73–95 Chapter Google Scholar
Wallace JD, Cuneo RC, Bidlingmaier M, et al. The response of molecular isoforms of growth hormone to acute exercise in trained adult males. J Clin Endocrinol Metab 2001; 86: 200–6 ArticlePubMedCAS Google Scholar
McCall GE, Goulet EC, Grindeland RE, et al. Bed rest suppresses bioassayable growth hormone release in response to muscle activity. J Appl Physiol 1997; 83: 2086–90 PubMedCAS Google Scholar
McCall GE, Grindeland RE, Roy RR, et al. Muscle afferent activity modulates bioassayable growth hormone in human plasma. J Appl Physiol 2000; 89: 1137–41 PubMedCAS Google Scholar
Nindl BC, Kraemer WJ, Hymer WC. Immunofunctional vs immunoreactive growth hormone responses after resistance exercise in men and women. Growth Horm IGF Res 2000; 10: 99–103 ArticlePubMedCAS Google Scholar
Hymer WC, Kraemer WJ, Nindl BC, et al. Characteristics of circulating growth hormone in women after acute heavy resistance exercise. Am J Physiol Endocrinol Metab 2001; 281: E878–87 Google Scholar
Kraemer WJ, Rubin MR, Häkkinen K, et al. Influence of muscle strength and total work on exercise-induced plasma growth hormone isoforms in women. J Sci Med Sport 2003; 6: 295–306 ArticlePubMedCAS Google Scholar
Vanhelder WP, Radomski MW, Goode RC. Growth hormone responses during intermittent weight lifting exercise in men. Eur J Appl Physiol 1984; 53: 31–4 ArticleCAS Google Scholar
Pyka G, Wiswell RA, Marcus R. Age-dependent effect of resistance exercise on growth hormone secretion in people. J Clin Endocrinol Metab 1992; 75: 404–7 ArticlePubMedCAS Google Scholar
Hoffman JR, Im J, Rundell KW, et al. Effect of muscle oxygenation during resistance exercise on anabolic hormone response. Med Sci Sports Exerc 2003; 35: 1929–34 ArticlePubMedCAS Google Scholar
Taylor JM, Thompson HS, Clarkson PM, et al. Growth hormone response to an acute bout of resistance exercise in weight-trained and non-weight-trained women. J Strength Cond Res 2000; 14: 220–7 Google Scholar
Rubin MR, Kraemer WJ, Maresh CM, et al. High-affinity growth hormone binding protein and acute heavy resistance exercise. Med Sci Sports Exerc 2005; 37: 395–403 ArticlePubMedCAS Google Scholar
Craig BW, Kang H. Growth hormone release following single versus multiple sets of back squats: total work versus power. J Strength Cond Res 1994; 8: 270–5 Google Scholar
Mulligan SE, Fleck SJ, Gordon SE, et al. Influence of resistance exercise volume on serum growth hormone and cortisol concentrations in women. J Strength Cond Res 1996; 10: 256–62 Google Scholar
Gordon SE, Kraemer WJ, Vos NH, et al. Effect of acid-base balance on the growth hormone response to acute high-intensity cycle exercise. J Appl Physiol 1994; 76: 821–9 PubMedCAS Google Scholar
Zafeiridis A, Smilios I, Considine RV, et al. Serum leptin responses after acute resistance exercise protocols. J Appl Physiol 2003; 94: 591–7 PubMedCAS Google Scholar
Smilios I, Pilianidis T, Karamouzis M, et al. Hormonal responses after various resistance exercise protocols. Med Sci Sports Exerc 2003; 35: 644–54 ArticlePubMedCAS Google Scholar
Williams AG, Ismail AN, Sharma A, et al. Effects of resistance exercise volume and nutritional supplementation on anabolic and catabolic hormones. Eur J Appl Physiol 2002; 86: 315–21 ArticlePubMedCAS Google Scholar
Goto K, Sato K, Takamatsu K. A single set of low intensity resistance exercise immediately following high intensity resistance exercise stimulates growth hormone secretion in men. J Sports Med Phys Fitness 2003; 43: 243–9 PubMedCAS Google Scholar
Kraemer WJ, Dudley GA, Tesch PA, et al. The influence of muscle action on the acute growth hormone response to resistance exercise and short-term detraining. Growth Horm IGF Res 2001; 11: 75–83 ArticlePubMedCAS Google Scholar
Ju G. Evidence for direct neural regulation of the mammalian anterior pituitary. Clin Exp Pharmacol Physiol 1999; 26: 757–9 ArticlePubMedCAS Google Scholar
Zhang Y, Jiang J, Black RA, et al. Tumor necrosis factor-α converting enzyme (TACE) is a growth hormone-binding protein (GHBP) sheddase: the metalloprotease TACE/ADAM-17 is critical for (PMA-induced) GH receptor proteolysis and GHBP generation. Endocrinology 2000; 141: 4342–8 ArticlePubMedCAS Google Scholar
Boone JB, Lambert CP, Flynn MG, et al. Resistance exercise effects on plasma cortisol, testosterone and creatine kinase activity in anabolic-androgenic steroid users. Int J Sports Med 1990; 11: 293–7 ArticlePubMed Google Scholar
Kraemer WJ, Fleck SJ, Callister R, et al. Training responses of plasma beta-endorphin, adrenocorticotropin, and cortisol. Med Sci Sports Exerc 1989; 21: 146–53 PubMedCAS Google Scholar
Kraemer WJ, Dziados JE, Marchitelli LJ, et al. Effects of different heavy-resistance exercise protocols on plasma β-endorphin concentrations. J Appl Physiol 1993; 74: 450–9 PubMedCAS Google Scholar
Kraemer WJ, Noble BJ, Clark MJ, et al. Physiologic responses to heavy-resistance exercise with very short rest periods. Int J Sports Med 1987; 8: 247–52 ArticlePubMedCAS Google Scholar
Kraemer WJ, Clemson A, Triplett NT, et al. The effects of plasma cortisol elevation on total and differential leukocyte counts in response to heavy-resistance exercise. Eur J Appl Physiol 1996; 73: 93–7 ArticleCAS Google Scholar
Tarpenning KM, Wiswell RA, Hawkins SA, et al. Influence of weight training exercise and modification of hormonal response on skeletal muscle growth. J Sci Med Sport 2001; 4: 431–46 ArticlePubMedCAS Google Scholar
Haff GG, Lehmkuhl MJ, McCoy LB, et al. Carbohydrate supplementation and resistance training. J Strength Cond Res 2003; 17: 187–96 PubMed Google Scholar
Fry AC, Kraemer WJ, Stone MH, et al. Endocrine responses to overreaching before and after 1 year of weightlifting. Can J Appl Physiol 1994; 19: 400–10 ArticlePubMedCAS Google Scholar
Crowley MA, Matt KS. Hormonal regulation of skeletal muscle hypertrophy in rats: the testosterone to cortisol ratio. Eur J Appl Physiol 1996; 73: 66–72 ArticleCAS Google Scholar
Häkkinen K. Neuromuscular and hormonal adaptations during strength and power training: a review. J Sports Med Phys Fitness 1989; 29: 9–26 PubMed Google Scholar
Hickson RC, Czerwinski SM, Falduto MT, et al. Glucocorticoid antagonism by exercise and androgenic-anabolic steroids. Med Sci Sports Exerc 1990; 22: 331–40 PubMedCAS Google Scholar
Mayer M, Rosen F. Interaction of anabolic steroids with glucocorticoid receptor site in rat muscle cytosol. Am J Physiol 1975; 229: 1381–6 PubMedCAS Google Scholar
Willoughby DS, Taylor M, Taylor L. Glucocorticoid receptor and ubiquitin expression after repeated eccentric exercise. Med Sci Sports Exerc 2003; 35: 2023–31 ArticlePubMedCAS Google Scholar
Fedele MJ, Lang CH, Farrell PA. Immunization against IGF-1 prevents increases in protein synthesis in diabetic rats after resistance exercise. Am J Physiol Endocrinol Metab 2001; 280: E877–85 Google Scholar
Kraemer WJ, Aguilera BA, Terada M, et al. Responses of IGF-1 to endogenous increases in growth hormone after heavy-resistance exercise. J Appl Physiol 1995; 79: 1310–5 PubMedCAS Google Scholar
Koziris LP, Hickson RC, Chatterton RT, et al. Serum levels of total and free IGF-1 and IGFBP-3 are increased and maintained in long-term training. J Appl Physiol 1999; 86: 1436–42 PubMedCAS Google Scholar
Borst SE, De Hoyos DV, Garzarella L, et al. Effects of resistance training on insulin-like growth factor-I and IGF binding proteins. Med Sci Sports Exerc 2001; 33: 648–53 PubMedCAS Google Scholar
Raastad T, Glomsheller T, Bjoro T, et al. Recovery of skeletal muscle contractility and hormonal responses to strength exercise after two weeks of high-volume strength training. Scand J Med Sci Sports 2003; 13: 159–68 ArticlePubMedCAS Google Scholar
Adams GR. Role of insulin-like growth factor-I in the regulation of skeletal muscle adaptation to increased loading. Exerc Sports Sci Rev 1998; 26: 31–60 ArticleCAS Google Scholar
Goldspink G. Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. J Anat 1999; 194: 323–34 ArticlePubMedCAS Google Scholar
Hameed M, Orrel RW, Cobbold G, et al. Expression of IGF-1 splice variants in young and old human skeletal muscle after high resistance exercise. J Physiol 2003; 547: 247–54 ArticlePubMedCAS Google Scholar
Brahm H, Piehl-Aulin K, Saltin B, et al. Net fluxes over working thigh of hormones, growth factors and biomarkers of bone metabolism during short lasting dynamic exercise. Calcif Tissue Int 1997; 60: 175–80 ArticlePubMedCAS Google Scholar
Nindl BC, Kraemer WJ, Marx JO, et al. Overnight responses of the circulating IGF-1 system after acute heavy-resistance exercise. J Appl Physiol 2001; 90: 1319–26 PubMedCAS Google Scholar
Biolo G, Tipton KD, Klein S, et al. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol Endocrinol Metab 1997; 273: E122–9 Google Scholar
Wolfe RR. Effects of insulin on muscle tissue. Curr Opin Clin Nutr Metab Care 2000; 3: 67–71 ArticlePubMedCAS Google Scholar
Borsheim E, Cree MG, Tipton KD, et al. Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise. J Appl Physiol 2004; 96: 674–8 ArticlePubMedCAS Google Scholar
Thyfault JP, Carper MJ, Richmond SR, et al. Effects of liquid carbohydrate ingestion on markers of anabolism following high-intensity resistance exercise. J Strength Cond Res 2004; 18: 174–9 PubMed Google Scholar
Volek JS, Ratamess NA, Rubin MR, et al. The effects of creatine supplementation on muscular performance and body composition responses to short-term resistance training overreaching. Eur J Appl Physiol 2004; 91: 628–37 ArticlePubMedCAS Google Scholar
Bush JA, Kraemer WJ, Mastro AM, et al. Exercise and recovery responses of adrenal medullary neurohormones to heavy resistance exercise. Med Sci Sports Exerc 1999; 31: 554–9 ArticlePubMedCAS Google Scholar
Eliot DL, Goldberg L, Watts WJ, et al. Resistance exercise and plasma beta-endorphin/beta-lipotrophin immunoreactivity. Life Sci 1984; 34: 515–8 Article Google Scholar
Walberg-Rankin J, Franke WD, Gwazdauskas FC. Response of beta-endorphin and estradiol to resistance exercise females during energy balance and energy restriction. Int J Sports Med 1992; 13: 542–7 ArticlePubMedCAS Google Scholar
Kraemer RR, Acevedo EO, Dzewaltowski D, et al. Effects of low-volume resistive exercise on beta-endorphin and cortisol concentrations. Int J Sports Med 1996; 17: 12–6 ArticlePubMedCAS Google Scholar
Pierce EF, Eastman NW, Tripathi HT, et al. Plasma beta-endorphin immunoreactivity: response to resistance exercise. J Sport Sci 1993; 11: 499–502 ArticleCAS Google Scholar
Pierce EF, Eastman NW, McGowan RW, et al. Resistance exercise decreases beta-endorphin immunoreactivity. Br J Sports Med 1994; 28: 164–6 ArticlePubMedCAS Google Scholar
Goldfarb AH, Hatfield BD, Armstrong D, et al. Plasma beta-endorphin concentration: response to intensity and duration of exercise. Med Sci Sports Exerc 1990; 22: 241–4 PubMedCAS Google Scholar
Cardone A, Angelini F, Esposito T, et al. The expression of androgen receptor messenger RNA is regulated by tri-iodothyronine in lizard testis. J Steroid Biochem Mol Biol 2000; 72: 133–41 ArticlePubMedCAS Google Scholar
Pakarinen A, Alen M, Häkkinen K, et al. Serum thyroid hormones, thyrotropin and thyroxine binding globulin during prolonged strength training. Eur J Appl Physiol 1988; 57: 394–8 ArticleCAS Google Scholar
Simsch C, Lormes W, Petersen KG, et al. Training intensity influences leptin and thyroid hormones in highly trained rowers. Int J Sports Med 2002; 23: 422–7 ArticlePubMedCAS Google Scholar
Pakarinen A, Häkkinen K, Alen M. Serum thyroid hormones, thyrotropin, and thyroxine binding globulin in elite athletes during very intense strength training of one week. J Sports Med Phys Fitness 1991; 31: 142–6 PubMedCAS Google Scholar
Alen M, Pakarinen A, Häkkinen K. Effects of prolonged training on serum thyrotropin and thyroid hormones in elite strength athletes. J Sport Sci 1993; 11: 493–7 ArticleCAS Google Scholar
Mannix ET, Palange P, Aronoff GR, et al. Atrial natriuretic peptide and the renin-aldosterone axis during exercise in man. Med Sci Sports Exerc 1990; 22: 785–9 PubMedCAS Google Scholar
Convertino VA, Keil LC, Bernauer EM, et al. Plasma volume, osmolality, vasopressin, and renin activity during graded exercise in man. J Appl Physiol 1981; 50: 123–8 PubMed Google Scholar
Gordon NF, Russell HMS, Krüger PE, et al. Thermoregulatory responses to weight training. Int J Sports Med 1985; 6: 145–50 ArticlePubMedCAS Google Scholar
Collins MA, Hill DW, Cureton KJ, et al. Plasma volume change during heavy-resistance weight lifting. Eur J Appl Physiol 1986; 55: 44–8 ArticleCAS Google Scholar
Kalra SP, Dube MG, Pu S, et al. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocrine Rev 1999; 20: 68–100 ArticleCAS Google Scholar
Considine RV, Sinha MK, Heiman ML, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996; 334: 292–5 ArticlePubMedCAS Google Scholar
Considine RV. Weight regulation, leptin and growth hormone. Horm Res 1997; 48 Suppl. 5: 116–21 ArticlePubMedCAS Google Scholar
Rolf C, von Eckardstein S, Koken U, et al. Testosterone substitution of hypogonadal men prevents the age-dependent increases in body mass index, body fat and leptin seen in healthy ageing men: results of a cross-sectional study. Eur J Endocrinol 2002; 146: 505–11 ArticlePubMedCAS Google Scholar
Lovejoy JC, Bray GA, Greeson CS, et al. Oral anabolic steroid treatment, but not parenteral androgen treatment, decreases abdominal fat in obese, older men. Int J Obes Relat Metab Disord 1995; 19: 614–24 PubMedCAS Google Scholar
Jockenhovel F, Blum WF, Vogel E, et al. Testosterone substitution normalizes elevated serum leptin levels in hypogonadal males. J Clin Endocrinol Metab 1997; 82: 2510–3 ArticlePubMedCAS Google Scholar
Gippini A, Mato A, Peino R, et al. Effect of resistance exercise (body building) training on serum leptin levels in young men. Implications for relationship between body mass index and serum leptin. J Endocrinol Invest 1999; 22: 824–8 PubMedCAS Google Scholar
Nindl BC, Kraemer WJ, Arciero PJ, et al. Leptin concentrations experience a delayed reduction after resistance exercise in men. Med Sci Sports Exerc 2002; 34: 608–13 ArticlePubMedCAS Google Scholar
Tena-Sempere M, Manna PR, Zhang FP, et al. Molecular mechanisms of leptin action in adult rat testis: potential targets for leptin-induced inhibition of steroidogenesis and pattern of leptin receptor messenger ribonucleic acid expression. J Endocrinol 2001; 170: 413–23 ArticlePubMedCAS Google Scholar
Isidori AM, Caprio M, Strollo F, et al. Leptin and androgens in male obesity: evidence for leptin contribution to reduced androgen levels. J Clin Endocrinol Metab 1999; 84: 3673–80 ArticlePubMedCAS Google Scholar
Lima N, Cavaliere H, Knobel M, et al. Decreased androgen levels in massively obese men may be associated with impaired function of the gonadostat. Int J Obes Relat Metab Disord 2000; 24: 1433–7 ArticlePubMedCAS Google Scholar
Triplett-McBride NT, Mastro AM, McBride JM, et al. Plasma proenkephalin peptide F and human B cell responses to exercise stress in fit and unfit women. Peptides 1998; 19: 731–8 ArticlePubMedCAS Google Scholar
Kraemer WJ, Noble B, Culver B, et al. Changes in plasma proenkephalin peptide F and catecholamine levels during graded exercise in men. Proc Nat Acad Sci USA 1985; 82: 6349–51 ArticlePubMedCAS Google Scholar
Notelowitz M. Estrogen therapy and osteoporosis: principles and practice. Am J Med Sci 1997; 313: 2–12 Article Google Scholar
Kendall B, Eston R. Exercise-induced muscle damage and the potential protective role of estrogen. Sports Med 2002; 32: 103–23 ArticlePubMed Google Scholar
Davies BN, Elford JC, Jamieson KF. Variations in performance in simple muscle tests at different phases of the menstrual cycle. J Sports Med Phys Fitness 1991; 31: 532–7 PubMedCAS Google Scholar
Sarwar R, Niclos BB, Rutherford OM. Changes in muscle strength, relaxation rate and fatigability during the human menstrual cycle. J Physiol 1996; 493: 267–72 PubMedCAS Google Scholar
Friden C, Hirschberg AL, Saartok T. Muscle strength and endurance do not significantly vary across phases of the menstrual cycle in moderately active premenopausal women. Clin J Sport Med 2003; 13: 238–41 ArticlePubMed Google Scholar
Elliott KJ, Cable NT, Reilly T, et al. Effect of menstrual cycle phase on the concentration of bioavailable 17-beta oestradiol and testosterone and muscle strength. Clin Sci 2003; 105: 663–9 ArticlePubMedCAS Google Scholar
Janes de Jonge XA, Boot CR, Thom JM, et al. The influence of menstrual cycle phase on skeletal muscle contractile characteristics in humans. J Physiol 2001; 530: 161–6 Article Google Scholar
Kraemer RR, Heleniak RJ, Tryniecki JL, et al. Follicular and luteal phase hormonal responses to low-volume resistive exercise. Med Sci Sports Exerc 1995; 27: 809–17 PubMedCAS Google Scholar
Fry AC, Kraemer WJ, Van Borselen F, et al. Catecholamine responses to short-term high-intensity resistance exercise overtraining. J Appl Physiol 1994; 77: 941–6 PubMedCAS Google Scholar
Hortobagyi T, Houmard JA, Stevenson JR, et al. The effects of detraining on power athletes. Med Sci Sports Exerc 1993; 25: 929–35 PubMedCAS Google Scholar
Kraemer WJ, Koziris LP, Ratamess NA, et al. Detraining produces minimal changes in physical performance and hormonal variables in recreationally strength-trained men. J Strength Cond Res 2002; 16: 373–82 PubMed Google Scholar
Kraemer WJ, Loebel CC, Volek JS, et al. The effect of heavy resistance exercise on the circadian rhythm of salivary testosterone in men. Eur J Appl Physiol 2001; 84: 13–8 ArticlePubMedCAS Google Scholar
Nindl BC, Hymer WC, Deaver DR, et al. Growth hormone pulsatility profile characteristics following acute heavy resistance exercise. J Appl Physiol 2001; 91: 163–72 PubMedCAS Google Scholar
Kraemer WJ, Patton JF, Gordon SE, et al. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol 1995; 78: 976–89 PubMedCAS Google Scholar
Bell GJ, Syrotuik D, Martin TP, et al. Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentrations in humans. Eur J Appl Physiol 2000; 81: 418–27 ArticlePubMedCAS Google Scholar