DNA Instability and Human Disease (original) (raw)
Meyn S. Chromosome instability syndromes; lessons for carcinogenesis. Curr Top Microbiol Immunol 1997; 221: 71–148 ArticlePubMedCAS Google Scholar
Zoghbi HY, Orr HT. Glutamine repeats and neurodegeneration. Am Rev Neurosci 2000; 23: 217–47 ArticleCAS Google Scholar
Kolodner R. Biochemistry and genetics of eukaryotic mismatch repair. Genes De velop 1996; 10(12): 1433–42 ArticleCAS Google Scholar
Streisinger G, Okada Y, Emrich J, et al. Frameshift mutations and the genetic code. Cold Spring Harbor Symposia on Quantitative Biology 1966; 31: 77–84 ArticlePubMedCAS Google Scholar
Parsons R, Li GM, Longley MJ, et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 1993; 75(6): 1227–36 ArticlePubMedCAS Google Scholar
Liu B, Nicolaides NC, Markowitz S, et al. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nat Genet 1995; 9(1): 48–55 ArticlePubMedCAS Google Scholar
Arzimanoglou II, Gilbert F, Barber HR. Microsatellite instability in human solid tumors. Cancer 1998; 82(10): 1808–20 ArticlePubMedCAS Google Scholar
Katabuchi H, van Rees B, Lambers AR, et al. Mutations in DNA mismatch repair genes are not responsible for microsatellite instability in most sporadic endometrial carcinomas. Cancer Res 1995; 55(23): 5556–60 PubMedCAS Google Scholar
Stark AA. Transient appearance of the mutator phenotype during carcinogenesis as a possible explanation for the lack of mini/microsatellite instability in many late stage tumors. Mutat Res 1998; 421(2): 221–5 ArticlePubMedCAS Google Scholar
Kane MF, Loda M, Gaida GM, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 1997; 57(5): 808–11 PubMedCAS Google Scholar
Fleisher AS, Esteller M, Wang S, et al. Hypermethylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res 1999; 59(5): 1090–5 PubMedCAS Google Scholar
Esteller M, Catasus L, Matias-Guiu X, et al. hMLH1 promoter hypermethylation is an early event in human endometrial tumorigenesis. Am J Pathol 1999; 155(5): 1767–72 ArticlePubMedCAS Google Scholar
Strathdee G, MacKean MJ, Illand M, et al. A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene 1999; 18(14): 2335–41 ArticlePubMedCAS Google Scholar
Bevilacqua RA, Simpson AJ. Methylation of the hMLH1 promoter but no hMLH1 mutations in sporadic gastric carcinomas with high-level microsatellite instability. Int J Cancer 2000; 87(2): 200–3 ArticlePubMedCAS Google Scholar
Bhattacharyya N, Chen HC, Grundfest-Broniatowski S, et al. Alteration of hMSH2 and DNA polymerase beta genes in breast carcinomas and fibroadenomas. Biochem Biophys Res Commun 1999; 259(2): 429–35 ArticlePubMedCAS Google Scholar
Kokoska RJ, Stefanovic L, Tran HT, et al. Destabilization of yeast micro- and minisatellite DNA sequences by mutations affecting a nuclease involved in Okazaki fragment processing (rad27) and DNA polymerase delta (pol3-t). Mol Cell Biol 1998; 18(5): 2779–88 PubMedCAS Google Scholar
Eshleman JR, Markowitz SD. Microsatellite instability in inherited and sporadic neoplasms. Curr Opinion Oncol 1995; 7(1): 83–9 CAS Google Scholar
Frazier ML, Sinicrope FA, Amos CI, et al. Loci for efficient detection of microsatellite instability in hereditary non-polyposis colorectal cancer. Oncol Rep 1999; 6(3): 497–505 PubMedCAS Google Scholar
Maehara Y, Oda S, Sugimachi K. The instability within: problems in current anal yses of microsatellite instability. Mutat Res 2001; 461(4): 249–63 ArticlePubMedCAS Google Scholar
Bacon AL, Farrington SM, Dunlop MG. Sequence interruptions confer differential stability at microsatellite alleles in mismatch repair-deficient cells. Hum Mol Genet 2000; 9(18): 2707–13 ArticlePubMedCAS Google Scholar
Parsons R, Myeroff LL, Liu B, et al. Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res 1995; 55(23): 5548–50 PubMedCAS Google Scholar
Zhou XP, Hoang JM, Li YJ, et al. Determination of the replication error phenotype in human tumors without the requirement for matching normal DNA by analysis of mononucleotide repeat microsatellites. Genes Chromosomes Cancer 1998; 21(2): 101–7 ArticlePubMedCAS Google Scholar
Hoang JM, Cottu PH, Thuille B, et al. BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines. Cancer Res 1997; 57(2): 300–3 PubMedCAS Google Scholar
Zhou XP, Hoang JM, Cottu P, et al. Allelic profiles of mononucleotide repeat microsatellites in control individuals and in colorectal tumors with and without replication errors. Oncogene 1997; 15(14): 1713–8 ArticlePubMedCAS Google Scholar
Pyatt R, Chadwick RB, Johnson CK, et al. Polymorphic variation at the BAT-25 and BAT-26 loci in individuals of African origin. Implications for microsatellite instability testing. Am J Pathol 1999; 155(2): 349–53 ArticlePubMedCAS Google Scholar
Loeb LA, Christians FC. Multiple mutations in human cancers. Mutat Res 1996; 350(1): 279–86 ArticlePubMed Google Scholar
Fearon ER, Jones PA. Progressing toward a molecular description of colorectal cancer development. FASEB J 1992; 6(10): 2783–90 PubMedCAS Google Scholar
Sia EA, Kokoska RJ, Dominska M, et al. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Mol Cell Biol 1997; 17(5): 2851–8 PubMedCAS Google Scholar
Souza RF, Garrigue-Antar L, Lei J, et al. Alterations of transforming growth factor-beta 1 receptor type II occur in ulcerative colitis-associated carcinomas, sporadic colorectal neoplasms, and esophageal carcinomas, but not in gastric neoplasms. Human Cell 1996; 9(3): 229–36 PubMedCAS Google Scholar
Lu SL, Akiyama Y, Nagasaki H, et al. Mutations of the transforming growth factor-beta type II receptor gene and genomic instability in hereditary nonpolyposis colorectal cancer. Biochem Biophys Res Commun 1995; 216(2): 452–7 ArticlePubMedCAS Google Scholar
Yamamoto H, Sawai H, Weber TK, et al. Somatic frameshift mutations in DNA mismatch repair and proapoptosis genes in hereditary nonpolyposis colorectal cancer. Cancer Res 1998; 58(5): 997–1003 PubMedCAS Google Scholar
Rampino N, Yamamoto H, Ionov Y, et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 1997; 275(5302): 967–9 ArticlePubMedCAS Google Scholar
Chung YJ, Park SW, Song JM, et al. Evidence of genetic progression in human gastric carcinomas with microsatellite instability. Oncogene 1997; 15(14): 1719–26 ArticlePubMedCAS Google Scholar
Mirabelli-Primdahl L, Gryfe R, Kim H, et al. Beta-catenin mutations are specific for colorectal carcinomas with microsatellite instability but occur in endometrial carcinomas irrespective of mutator pathway. Cancer Res 1999; 59(14): 3346–51 PubMedCAS Google Scholar
Miyaki M, Iijima T, Kimura J, et al. Frequent mutation of beta-catenin and APC genes in primary colorectal tumors from patients with hereditary nonpolyposis colorectal cancer. Cancer Res 1999; 59(18): 4506–9 PubMedCAS Google Scholar
Pianese L, Cavalcanti F, De Michele G, et al. The effect of parental gender on the GAA dynamic mutation in the FRDA gene. Am J Hum Genet 1997 Feb; 60(2): 460–3 PubMedCAS Google Scholar
Jodice C, Malaspina P, Persichetti F, et al. Effect of trinucleotide repeat length and parental sex on phenotypic variation in spinocerebellar ataxia I. Am J Hum Genet 1994 Jun; 54(6): 956–65 Google Scholar
Telenius H, Kremer HP, Theilmann J. Molecular analysis of juvenile Huntington disease: the major influence on (CAG)n repeat length is the sex of the affected parent. Hum Mol Genet 1993 Oct; 2910): 1535–40 ArticlePubMedCAS Google Scholar
Richards RI, Sutherland GR. Dynamic mutation: possible mechanisms and significance in human disease. Trends Biochem Sci 1997; 22(11): 432–6 ArticlePubMedCAS Google Scholar
Heale SM, Petes TD. The stabilization of repetitive tracts of DNA by variant repeats requires a functional DNA mismatch repair system. Cell 1995; 83(4): 539–45 ArticlePubMedCAS Google Scholar
Debrauwere H, Gendrel CG, Lechat S, et al. Differences and similarities between various tandem repeat sequences: minisatellites and microsatellites. Biochimie 1997; 79(9–10): 577–86 ArticlePubMedCAS Google Scholar
Pearson CE, Sinden RR. Trinucleotide repeat DNA structures: dynamic mutations from dynamic DNA. Curr Opin Struct Biol 1998; 8(3): 321–30 ArticlePubMedCAS Google Scholar
Lieber MR. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 1997; 19(3): 233–40 ArticlePubMedCAS Google Scholar
Gordenin DA, Kunkel TA, Resnick MA. Repeat expansion — all in a flap? Nat Genet 1997; 16(2): 116–8 ArticlePubMedCAS Google Scholar
Samadashwily GM, Raca G, Mirkin SM. Trinucleotide repeats affect DNA replication in vivo. Nat Genet 1997; 17(3): 298–304 ArticlePubMedCAS Google Scholar
Reagan MS, Pittenger C, Siede W, et al. Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision repair gene. J Bacteriol 1995; 177(2): 364–71 PubMedCAS Google Scholar
Vallen EA, Cross FR. Mutations in RAD27 define a potential link between G1 cyclins and DNA replication. Mol Cell Biol 1995; 15(8): 4291–302 PubMedCAS Google Scholar
Johnson RE, Kovvali GK, Prakash L, et al. Requirement of the yeast RTH1 5’ to 3’ exonuclease for the stability of simple repetitive DNA. Science 1995; 269(5221): 238–40 ArticlePubMedCAS Google Scholar
Schweitzer JK, Livingston DM. Expansions of GAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation. Hum Mol Genet 1998; 7(1): 69–74 ArticlePubMedCAS Google Scholar
Freudenreich CH, Kantrow SM, Zakian VA. Expansion and length-dependent fragility of CTG repeats in yeast. Science 1998; 279(5352): 853–6 ArticlePubMedCAS Google Scholar
Kennedy L, Shelbourne PF. Dramatic mutation instability in HD mouse striatum: does polyglutamine load contribute to cell-specific vulnerability in ton’s disease? Hum Mol Genet 2000; 9(17): 2539–44 ArticlePubMedCAS Google Scholar
Telenius H, Kremer B, Goldberg YP, et al. Somatic and gonadal mosaicism of the ton disease gene CAG repeat in brain and sperm. Nat Genet 1994; 6(4): 409–14 ArticlePubMedCAS Google Scholar
Kruyer H, Mila M, Glover G, et al. Fragile X syndrome and the (CGG)n mutation: two families with discordant MZ twins. Am J Hum Genet 1994; 54(3): 437–42 PubMedCAS Google Scholar
Kovtun IV, Therneau TM, McMurray CT. Gender of the embryo contributes to CAG instability in transgenic mice containing a ton’s disease gene. Hum Mol Genet 2000; 9(18): 2767–75 ArticlePubMedCAS Google Scholar
Manley K, Shirley TL, Flaherty L, et al. Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in ton disease transgenic mice. Nat Genet 1999; 23(4): 471–3 ArticlePubMedCAS Google Scholar
Li GM. The role of mismatch repair in DNA damage-induced apoptosis. Oncol Res 1999; 11(9): 393–400 PubMedCAS Google Scholar
Li H, Li SH, Johnston H, et al. Amino-terminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity. Nat Genet 2000; 25(4): 385–9 ArticlePubMedCAS Google Scholar
Matsuura T, Yamagata T, Burgess DL, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 2000; 26(2): 191–4 ArticlePubMedCAS Google Scholar
Juvonen V, Hietala M, Paivarinta M, et al. Clinical and genetic findings in Finnish ataxia patients with the spinocerebellar ataxia 8 repeat expansion. Ann Neurol 2000; 48(3): 354–61 ArticlePubMedCAS Google Scholar
Koob MD, Moseley ML, Schut LJ, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 1999; 21(4): 379–84 ArticlePubMedCAS Google Scholar
Silveira I, Alonso I, Guimaraes L, et al. High germinal instability of the (CTG)n at the SCA8 locus of both expanded and normal alleles. Am J Hum Genet 2000; 66(3): 830–40 ArticlePubMedCAS Google Scholar
Vincent JB, Neves-Pereira ML, Paterson AD, et al. An unstable trinucleotide-repeat region on chromosome 13 implicated in spinocerebellar ataxia: a common expansion locus. Am J Hum Genet 2000; 66(3): 819–29 ArticlePubMedCAS Google Scholar
Matsuura T, Achari M, Khajavi M, et al. Mapping of the gene for a novel spinocerebellar ataxia with pure cerebellar signs and epilepsy. Ann Neurol 1999; 45(3): 407–11 ArticlePubMedCAS Google Scholar
Koob MD, Moseley ML, Benzow KA et al. The SCA8 transcrfipt is an antisense RNA to a brain specific transcript encoding a novel actin-binding protein (KLH1). Am J Hum Genet 1999; 65 Suppl.: A30 Google Scholar
Ikeda Y, Shizuka M, Watanabe M, et al. Molecular and clinical analyses of spinocerebellar ataxia type 8 in Japan. Neurology 2000; 54(4): 950–5 ArticlePubMedCAS Google Scholar
Schols L, Szymanski S, Peters S, et al. Genetic background of apparently idiopathic sporadic cerebellar ataxia. Hum Genet 2000; 107(2): 132–7 ArticlePubMedCAS Google Scholar
Durr A, Stevanin G, Herman A, et al. Screening of the SCA8 expansion. Am J Hum Genet 1999; 65 Suppl.: A247 Article Google Scholar
Stevanin G, Durr A, Brice A. Clinical and molecular advances in autosomal dominant cerebellar ataxias: from genotype to phenotype and physiopathology. Eur J Hum Genet 2000; 8(1): 4–18 ArticlePubMedCAS Google Scholar
Stevanin G, Herman A, Durr A, et al. Are (CTG)n expansions at the SCA8 locus rare polymorphisms? Nat Genet 2000; 24(3): 213 ArticlePubMedCAS Google Scholar
Vincent JB, Yuan QP, Schalling M, et al. Long repeat tracts at SCA8 in major psychosis. Am J Med Genet 2000; 96(6): 873–6 ArticlePubMedCAS Google Scholar
Moseley ML, Koob MD, Ranum LPW. Frequent duplication of triplet interruptions within a seven generation SCA8 family. Am J Hum Genet 1999; 65 Suppl.: A462 Google Scholar
Worth PF, Houlden H, Giunti P, et al. Large, expanded repeats in SCA8 are not confined to patients with cerebellar ataxia [letter; comment]. Nat Genet 2000; 24(3): 214–5 ArticlePubMedCAS Google Scholar
Burgess DL, Noebels JL. Calcium channel defects in models of inherited generalized epilepsy. Epilepsia 2000; 41(8): 1074–5 ArticlePubMedCAS Google Scholar
Koide R, Kobayashi S, Shimohata T, et al. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 1999; 8(11): 2047–53 ArticlePubMedCAS Google Scholar
Ferro P, Catalano MG, Raineri M, et al. Somatic alterations of the androgen receptor CAG repeat in human colon cancer delineate a novel mutation pathway independent of microsatellite instability. Cancer Genet Cytogenet 2000; 123(1): 35–40 ArticlePubMedCAS Google Scholar