- Reilly T. The menstrual cycle and human performance: an overview. Biol Rhythm Res 2000; 31: 29–40
Article CAS Google Scholar
- Lebrun CM. The effect of the phase of the menstrual cycle and the birth control pill on athletic performance. Clin Sports Med 1994; 13: 419–41
PubMed CAS Google Scholar
- Buffenstein R, Poppott SD, McDevitt, RM et al. Food intake and themenstrual cycle: a retrospective analysis, with implications for appetite research. Physiol Behav 1995; 58: 1067–77
Article PubMed CAS Google Scholar
- Birch K. Circamensal rhythms in physical performance. Biol Rhythm Res 2000; 31: 1–14
Article CAS Google Scholar
- Jurkowski JEH, Jones NL, Toews CJ, et al. Effects of menstrual cycle on blood lactate, O2 delivery, and performance during exercise. J Appl Physiol 1981; 51: 1439–99
Google Scholar
- Bemben DA, Salm PC, Salm AJ. Ventilatory and blood lactate responses to maximal treadmill exercise during the menstrual cycle. J Sports Med Phys Fitness 1995; 35: 257–62
PubMed CAS Google Scholar
- Dean TM, Perreault L, Mazzeo RS, et al. No effect of menstrual cycle phase on lactate threshold. J Appl Physiol 2003; 95: 2537–43
PubMed Google Scholar
- De Souza MJ, Maguire MS, Rubin K. Effects of menstrual phase and amenorrhea on exercise responses in runners. Med Sci Sports Exerc 1990; 22: 575–80
Article PubMed Google Scholar
- Beidleman BA, Rock PB, Muza SR, et al. Exercise VE and physical performance at altitude are not affected by menstrual cycle phase. J Appl Physiol 1999; 86: 1519–26
PubMed CAS Google Scholar
- Casazza GA, Suh S-H, Miller BF, et al. Effects of oral contraceptives on peak exercise capacity. J Appl Physiol 2002; 93: 1698–702
PubMed CAS Google Scholar
- Dombovy ML, Bonekat HW, Williams TJ. Exercise performance and ventilatory response in the menstrual cycle. Med Sci Sport Exerc 1987; 19: 111–7
Article CAS Google Scholar
- Schoene RB, Robertson HT, Pierson DJ, et al. Respiratory drives and exercise in menstrual cycles of athletic and nonathletic women. J Appl Physiol 1981; 50: 1300–5
PubMed CAS Google Scholar
- Smekal G, Von Duvillard SP, Frigo P, et al. Menstrual cycle: no effect on exercise cardiorespiratory variables or blood lactate concentration. Med Sci Sports Exerc 2007; 39 (7): 1098–106
Article PubMed CAS Google Scholar
- Lebrun CM, McKenzie DC, Prior JC, et al. Effects of menstrual cycle phase on athletic performance. Med Sci Sports Exerc 1995; 27: 437–44
PubMed CAS Google Scholar
- Brutsaert TD, Spielvogel H, Caceres E, et al. Effect of menstrual cycle phase on exercise performance of highaltitude native women. J Exp Biol 2002; 202: 233–9
Google Scholar
- Stanford KI, Mickleborough TD, Ray S, et al. Influence of menstrual cycle phase on pulmonary function in asthmatic athletes. Eur J Appl Physiol; 96: 703–10
- Oosthuyse T, Bosch AN. Influence of menstrual phase on ventilatory responses to submaximal exercise. S Afr J Sports Med 2006; 18: 31–7
Google Scholar
- Forsyth JJ, Reilly T. The combined effect of time of day and menstrual cycle on lactate threshold. Med Sci Sports Exerc 2005; 37 (12): 2046–53
Article PubMed CAS Google Scholar
- Zderic TW, Coggan AR, Ruby BC. Glucose kinetics and substrate oxidation during exercise in the follicular and luteal phases. J Appl Physiol 2001; 90: 447–53
PubMed CAS Google Scholar
- Lavoie J-M, Dionne N, Helie R, et al. Menstrual cycle phase dissociation of blood glucose homeostasis during exercise. J Appl Physiol 1987; 62: 1084–9
Article PubMed CAS Google Scholar
- McCracken M, Ainsworth B, Hackney AC. Effects of the menstrual cycle phase on the blood lactate response to exercise. Eur J Appl Physiol 1994; 69: 174–5
Article CAS Google Scholar
- Campbell SE, Angus DJ, Febbraio MA. Glucose kinetics and exercise performance during phases of the menstrual cycle: effect of glucose ingestion. Am J Physiol 2001; 281: E817–25
Google Scholar
- Nicklas BJ, Hackney AC, Sharp RL. The menstrual cycle and exercise: performance, muscle glycogen, and substrate responses. Int J Sports Med 1989; 10: 264–9
Article PubMed CAS Google Scholar
- Suh S-H, Casazza GA, Horning MA, et al. Effects of oral contraceptives on glucose flux and substrate oxidation rates during rest and exercise. J Appl Physiol 2002; 93: 42–50
PubMed CAS Google Scholar
- Horton TJ, Miller EK, Glueck D, et al. No effect of menstrual cycle phase on glucose kinetics and fuel oxidation during moderate-intensity exercise. Am J Physiol 2002; 282: E752–62
Google Scholar
- Brooks-Gunn J, Gargiulo JM, Warren MP. The effect of cycle phase in the performance of adolescent swimmers. Physician Sportsmed 1986; 14: 182–4
Google Scholar
- Davies BN, Elford JC, Jamieson KF. Variations in performance in simple muscle tests at different phases of the menstrual cycle. J Sports Med Phys Fitness 1991; 31 (4): 532–7
PubMed CAS Google Scholar
- Redman LM, Weatherby RP. Measuring performance during the menstrual cycle: a model using oral contraceptives. Med Sci Sports Exerc 2004; 36 (1): 130–6
Article PubMed Google Scholar
- Bushman B, Masterson G, Nelsen J. Anaerobic power performance and the menstrual cycle: eumenorrheic and oral contraceptive users. J Sports Med Phys Fitness 2006; 46 (1): 132–7
PubMed CAS Google Scholar
- Middleton LE, Wenger HA. Effects of menstrual phase on performance and recovery in intense intermittent activity. Eur J Appl Physiol 2006; 96: 53–8
Article PubMed Google Scholar
- Kendrick ZV, Steffen CA, Rumsey WL, et al. Effect of estradiol on tissue glycogen metabolism in exercised oophorectomized rats. J Appl Physiol 1987; 63: 492–6
PubMed CAS Google Scholar
- Jeukendrup A, Saris WHM, Brouns F, et al. A new validated endurance performance test. Med Sci Sports Exerc 1996; 28 (2): 266–70
Article PubMed CAS Google Scholar
- Bailey SP, Zacher CM, Mittleman KD. Effect of menstrual cycle phase on carbohydrate supplementation during prolonged exercise to fatigue. J Appl Physiol 2000; 88: 690–7
PubMed CAS Google Scholar
- McLay RT, Thomson CD, Williams SM, et al. Carbohydrate loading and female endurance athletes: effect of menstrual-cycle phase. Int J Sport Nutr Exerc Metab 2007; 17 (2): 189–205
PubMed CAS Google Scholar
- Oosthuyse T, Bosch AN, Jackson S. Cycling time trial performance during different phases of the menstrual cycle. Eur J Appl Physiol 2005; 94: 268–76
Article PubMed Google Scholar
- Ruby BC, Robergs RA, Waters DL, et al. Effects of estradiol on substrate turnover during exercise in amenorrheic females. Med Sci Sports Exerc 1997; 29: 1160–9
Article PubMed CAS Google Scholar
- Devries MC, Hamadeh MJ, Graham TE, et al. 17b-estradiol supplementation decreases glucose rate of appearance and disappearance with no effect on glycogen utilization during moderate intensity exercise in men. J Clin Endo Metab 2005; 90: 6218–25
Article CAS Google Scholar
- Palmer GS, Dennis SC, Noakes TD, et al. Assessment of the reproducibility of performance testing on an air-braked cycle ergometer. Int J Sports Med 1996; 17: 293–8
Article PubMed CAS Google Scholar
- Campbell SE, Febbraio MA. Effect of the ovarian hormones on GLUT4 expression and contraction-stimulated glucose uptake. Am J Physiol 2002; 282: E1139–46
Google Scholar
- Campbell SE, Febbraio MA. Effect of ovarian hormones on mitochondrial enzyme activity in fat oxidation pathway of skeletal muscle. Am J Physiol 2001; 281: E803–8
Google Scholar
- Hatta H, Atomi Y, Shinohara S, et al. The effects of ovarian hormones on glucose and fatty acid oxidation during exercise in female ovariectomized rats. Horm Metab Res 1988; 20: 609–11
Article PubMed CAS Google Scholar
- D’Eon TM, Sharoff C, Chipkin SR, et al. Regulation of exercise carbohydrate metabolism by estrogen and progesterone in women. Am J Physiol 2002; 283: E1046–55
Google Scholar
- Carter SL, McKenzie S, Mourtzakis M, et al. Short-term 17b-estradiol decreases glucose Ra but not whole body metabolism during endurance exercise. J Appl Physiol 2001; 90: 139–46
PubMed CAS Google Scholar
- Devries MC, Mazen JH, Phillips SM, et al. Menstrual cycle phase and sex influence muscle glycogen utilization and glucose turnover during moderate-intensity endurance exercise. Am J Physiol 2006; 291: R1120–8
Google Scholar
- Matute ML, Kalkhoff RK. Sex steroid influence on hepatic gluconeogenesis and glycogen formation. Endocrinology 1973; 92: 762–8
Article PubMed CAS Google Scholar
- Friedlander AL, Casazza GA, Horning MA, et al. Training- induced alterations of carbohydrate metabolism in women: women respond differently from men. J Appl Physiol 1998; 85 (3): 1175–86
PubMed CAS Google Scholar
- Hackney AC. Influence of oestrogen on muscle glycogen utilization during exercise. Acta Physiol Scand 1999; 167: 273–4
Article PubMed CAS Google Scholar
- Hackney AC. Effects of the menstrual cycle on resting muscle glycogen content. Horm Metab Res 1990; 22: 647
Article PubMed CAS Google Scholar
- Tarnopolsky MA, Roy BD, MacDonald JR, et al. Short-term 17-b-estradiol administration does not affect metabolism in young males. Int J Sports Med 2001; 22: 175–80
Article PubMed CAS Google Scholar
- Shimomura K, Shimizu H, Tsuchiya T, et al. Is leptin a key factor which develops obesity by ovariectomy? Endocr J 2002; 49 (4): 417–23
Article PubMed CAS Google Scholar
- Rooney TP, Kendrick ZV, Carlson J, et al. Effect of estradiol on the temporal pattern of exercise-induced tissue glycogen depletion in male rats. J Appl Physiol 1993; 75: 1502–6
PubMed CAS Google Scholar
- Beckett T, Tchernof A, Tchernof A. Effect of ovariectomy and estradiol replacement on skeletal muscle enzyme activity in female rats. Metabolism 2002; 51 (11): 1397–401
Article PubMed CAS Google Scholar
- Latour MG, Shinoda M, Lavoie J-M. Metabolic effects of physical training in ovariectomized and hyperestrogenic rats. J Appl Physiol 2001; 90: 235–41
PubMed CAS Google Scholar
- Van Pelt RE, Gozansky WS, Schwartz RS, et al. Intravenous estrogens increase insulin clearance and action in postmenopausal women. Am J Physiol 2003; 285: E311–7
Google Scholar
- Hansen PA, McCarthy TJ, Pasia EN, et al. Effects of ovariectomy and exercise training on muscle GLUT-4 content and glucose metabolism in rats. J Appl Physiol 1996; 80: 1605–11
Article PubMed CAS Google Scholar
- Cooper BC, Sites CK, Casson PR, et al. Ovarian suppression with a gonadotropin-releasing hormone agonist does not alter insulin-stimulated glucose disposal. Fertil Steril 2007; 87 (5): 1131–8
Article PubMed CAS Google Scholar
- Toth MJ, Cooper BC, Partley RE, et al. Effect of ovarian suppression with gonadotropin-releasing hormone agonist on glucose disposal and insulin secretion. Am J Physiol 2008; 294: E1035–45
Google Scholar
- Kalkhoff RK. Metabolic effects of progesterone. Am J Obstet Gynecol 1982; 142: 735–8
PubMed CAS Google Scholar
- Elkind Hirsch KE, Sherman LD, Malinak R. Hormone replacement therapy alters insulin sensitivity in young women with premature ovarian failure. J Clin Endocrinol Metab 1993; 76: 472–5
Article PubMed CAS Google Scholar
- Ezenwaka EC, Akanji AO, Adejuwon CA, et al. Insulin responses following glucose administration in menstruating women. Int J Gynaecol Obstet 1993; 42: 155–9
Article PubMed CAS Google Scholar
- Hackney AC, Curley CS, Nicklas BJ. Physiological responses to submaximal exercise at the mid-follicular, ovulatory and mid-luteal phases of the menstrual cycle. Scand J Med Sci Sports 1991; 1: 94–8
Article Google Scholar
- Horton TJ, Miller EK, Bourret K. No effect of menstrual cycle phase on glycerol or palmitate kinetics during 90min of moderate exercise. J Appl Physiol 2006; 100: 917–25
Article PubMed CAS Google Scholar
- Jacobs KA, Casazza GA, Suh S-H, et al. Fatty acid reesterification but not oxidation is increased by oral contraceptive use in women. J Appl Physiol 2005; 98: 1720–31
Article PubMed CAS Google Scholar
- Wolfe RR. Radioactive and stable isotope tracers in biomedicine: principles and practice of kinetic analysis. New York: Wiley-Liss, Incorporated, 1992
Google Scholar
- Landau BR, Wahren J, Previs SF, et al. Glycerol production and utilization in humans: sites and quantification. Am J Physiol 1996; 271: E1110–7
Google Scholar
- Elia M, Kahn K, Calder G, et al. Glycerol exchange across the human forearm assessed by a combination of tracer and arteriovenous exchange techniques. Clin Sci 1993; 84: 99–104
PubMed CAS Google Scholar
- Casazza GA, Jacobs KA, Suh S-H, et al. Menstrual cycle phase and oral contraceptive effects on triglyceride mobilization during exercise. J Appl Physiol 2004; 97: 302–9
Article PubMed CAS Google Scholar
- Hellström L, Blaak E, Hagström-Toft E. Gender differences in adrenergic regulation of lipid mobilization during exercise. Int J Sports Med 1996; 17: 439–47
Article PubMed Google Scholar
- Mittendorfer B, Horowitz JF, Klein S. Effect of gender on lipid kinetics during endurance exercise of moderate intensity in untrained subjects. Am J Physiol 2002; 283: E58–65
Google Scholar
- Haffner SM, Valdez RA. Endogenous sex hormones: impact on lipids, lipoproteins, and insulin. Am J Med 1995; 98: 40S–7S
Article PubMed CAS Google Scholar
- Faria ACS, Bekenstein LW, Booth Jr RA, et al. Pulsatile growth hormone release in normal women during the menstrual cycle. Clin Endocrin 1992; 36: 591–6
Article CAS Google Scholar
- Benoit V, Valette A, Mercier L, et al. Potentiation of epinephrine-induced lipolysis in fat cells from estrogen-treated rats. Biochem Biophys Res Comm 1982; 109: 1186–91
Article PubMed CAS Google Scholar
- Hansen FM, Fahmy N, Nielsen JH. The influence of sexual hormones on lipogenesis and lipolysis in rat fat cells. Acta Endocrin 1980; 95: 566–70
CAS Google Scholar
- Ellis GS, Lanza-Jacoby S, Gow A, et al. Effects of estradiol on lipoprotein lipase activity and lipid availability in exercised male rats. J Appl Physiol 1994; 77: 209–15
PubMed CAS Google Scholar
- Spriet LL. Regulation of fat/carbohydrate interaction in human skeletal muscle during exercise. Adv Exp Med Biol 1998; 441: 249–61
PubMed CAS Google Scholar
- Romijn JA, Coyle EF, Sidossis LS, et al. Substrate metabolism during different exercise intensities in endurancetrained women. J Appl Physiol 2000; 88: 1707–14
PubMed CAS Google Scholar
- Romijn JA, Coyle EF, Sidossis LS, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. AmJ Physiol 1993; 265: E380–91
Google Scholar
- Friedlander AL, Casazza GA, Horning MA, et al. Effects of exercise intensity and training on lipid metabolism in young women. J Appl Physiol 1998; 275: E853–63
Google Scholar
- Heiling VJ, Jensen MD. Free fatty acid metabolism in the follicular and luteal phases of the menstrual cycle. J Clin Endocrinol Metab 1992; 74: 806–10
Article PubMed CAS Google Scholar
- Jensen MD, Martin ML, Cryer PE, et al. Effects of estrogen on free fatty acid metabolism in humans. Am J Physiol 1994; 266: E914–20
Google Scholar
- Magkos F, Patterson BW, Mittendorfer B. No effect of menstrual cycle phase on basal very-low-density lipoprotein triglyceride and apolipoprotein B-100 kinetics. Am J Physiol 2006; 291: E1243–9
Google Scholar
- Uranga AP, Levine J, Jensen M. Isotope tracer measures of meal fatty acid metabolism: reproducibility and effects of the menstrual cycle. Am J Physiol 2005; 288: E547–55
Google Scholar
- D’Eon TM, Souza SC, Aronovitz M, et al. Estrogen regulation of adiposity and fuel partitioning: evidence of genomic and non-genomic regulation of lipogenic and oxidative pathways. J Biol Chem 2005; 280 (43): 35983–91
Article PubMed CAS Google Scholar
- Sidossis LS, Coggan AR, Gastadelli A, et al. A new correction factor for use in tracer estimations of plasma fatty acid oxidation. Am J Physiol 1995; 269: E649–56
Google Scholar
- Oosthuyse T, Bosch AN, Jackson S. Effect of menstrual phase on the acetate correction factor used in metabolic tracer studies. Can J Appl Physiol 2003; 28: 818–30
Article PubMed Google Scholar
- Lamont LS, Lemon PWR, Bruot BC. Menstrual cycle and exercise effects on protein catabolism. Med Sci Sports Exerc 1987; 19: 106–10
PubMed CAS Google Scholar
- White LJ, Ferguson MA, McCoy S, et al. Intramyocellular lipid changes in men and women during aerobic exercise: a 1H-magnetic resonance spectroscopy study. J Clin Endocrinol Metab 2003; 88: 5638–43
Article PubMed CAS Google Scholar
- Tarnopolsky MA, Rennie CD, Robertshaw HA, et al. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol 2007; 292 (3): R1271–8
Google Scholar
- Devries MC, Lowther SA, Glover AW, et al. IMCL area density, but not IMCL utilization, is higher in women during moderate-intensity endurance exercise, compared with men. Am J Physiol 2007; 293 (6): R2336–42
Google Scholar
- Zehnder M, Ith M, Kreis R, et al. Gender-specific usage of intramyocellular lipids and glycogen during exercise. Med Sci Sports Exerc 2005; 37 (9): 1517–24
Article PubMed CAS Google Scholar
- Forsberg AM, Nilsson E, Werneman J, et al. Muscle composition in relation to age and sex. Clin Sci 1991; 81: 249–56
PubMed CAS Google Scholar
- Roepstorff C, Steffensen CH, Madsen M, et al. Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects. AmJ Physiol 2002; 282: E435–47
Google Scholar
- Roepstorff C, Donsmark M, Thiele M, et al. Sex differences in hormone-sensitive lipase expression, activity, and phosphorylation in skeletal muscle at rest and during exercise. Am J Physiol 2006; 291: E1106–14
Google Scholar
- Steffensen CH, Roepstorff C, Madsen M, et al. Myocellular triacylglycerol breakdown in females but not in males during exercise. Am J Physiol 2002; 282: E634–42
Google Scholar
- Jrgensen SB, Richter EA, Wojtaszewski JFP. Role of AMPK in skeletal muscle metabolism regulation and adaptation in relation to exercise. J Physiol 2006; 574 (1): 17–31
Article CAS Google Scholar
- Steinberg GR, Macaulay SL, Febbraio MA, et al. AMP activated protein kinase: the fat controller of the energy railroad. Can J Physiol Pharmacol 2006; 84: 655–65
Article PubMed CAS Google Scholar
- Roepstorff C, Thiele M, Hillig T, et al. Higher skeletal muscle a2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise. J Physiol 2006; 574 (1): 125–38
Article PubMed CAS Google Scholar
- Wiik A, Gustafsson T, Esbjo rnssonM, et al. Expression of oestrogen receptor alpha and beta is higher in skeletal muscle of highly endurance-trained than of moderately active men. Acta Physiol Scand 2005; 184 (2): 105–12
Article PubMed CAS Google Scholar
- Combs TP, Berg AH, Rajala MW, et al. Sexual differentiation, pregnancy, calorie restriction, and aging affect the adipocyte-specific secretory protein adiponectin. Diabetes 2003; 52: 268–76
Article PubMed CAS Google Scholar
- Kleiblova P, Springer D, Haluzik M. The influence of hormonal changes during menstrual cycle on serum adiponectin concentration in healthy women. Physiol Res 2006; 55: 661–6
PubMed CAS Google Scholar
- Kriengsinyos W, Wykes LJ, Goonewardene LA, et al. Phase of menstrual cycle affects lysine requirement in healthy women. Am J Physiol 2004; 287: E489–96
Google Scholar
- Lariviere F, Moussalli R, Garrel DR. Increased leucine flux and leucine oxidation during the luteal phase of the menstrual cycle in women. Am J Physiol 1994; 267: E422–8
Google Scholar
- Toth MJ, Sites CK, Matthews DE, et al. Ovarian suppression with gonadotropin-releasing hormone agonist reduces whole body protein turnover in women. Am J Physiol 2006; 291: E483–90
Article CAS Google Scholar
- Hamadeh MJ, Devries MC, Tarnopolsky MA. Estrogen supplementation reduces whole body leucine and carbohydrate oxidation and increases lipid oxidation in men during endurance exercise. J Clin Endocrinol Metab 2005; 90 (6): 3592–9
Article PubMed CAS Google Scholar
- Miller BF, Hansen M, Olesen JL, et al. No effect of menstrual cycle on myofibrillar and connective tissue protein synthesis in contracting skeletal muscle. Am J Physiol 2006; 290: E163–8
Google Scholar