Efficacy of Dexamethasone for the Treatment of COVID-19 Infection: A Perspective Review (original) (raw)

Open Access Journals Promotions 2

The current COVID-19 pandemic has provoked the urgent requirement to search for effective treatments since the implications are so huge globally as compared to the earlier pandemics. Momentarily, there has been no effective medicine for SARS-CoV-2 infection, and supportive care tends to be the most effective approach to treat COVID-19 patients. The rapidly growing awareness of SARS-CoV-2 virology offers a large number of possible drug targets. The World Health Organisation (WHO) is steadily updating the treatment protocol for COVID-19 based on the recent clinical trials. In the present review, we have summarised the possible mode of action, clinical evidence, consequences of dexamethasone as the therapeutic agent against Covid-19. Currently, many corticosteroids are being tested in ongoing randomised trials. Dexamethasone could come as the life-saving drug. Dexamethasone drug looks useful only in those patients who are already in a critical state. We might allow dexamethasone as a fascinating shot, if the drug proves to be clinically favourable for long-term health effects of Covid-19 recovered patients. It is commonly accepted to reinforce approved drugs in the fight against newly emerging diseases such as COVID-19 as these drugs have established pharmacokinetic profiles and protection. The current focus should be on the development of novel proven therapeutics along with vaccines. There is a need for high quality, more extensive, rapid and collaborative randomized controlled trials with more control groups.

Keywords: Dexamethasone, covid-19, pandemic, treatment, cytokine storm, SARS-CoV-2 infection.

[3]

Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on Coronavirus Disease 2019 (COVID-19) outbreak - an update on the status. Mil. Med. Res. , 2020, 7(1), 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 32169119]

[4]

To, K.K.W.; Tsang, O.T.Y.; Yip, C.C.; Chan, K.H.; Wu, T.C.; Chan, J.M.C.; Leung, W.S.; Chik, T.S.; Choi, C.Y.; Kandamby, D.H.; Lung, D.C.; Tam, A.R.; Poon, R.W.; Fung, A.Y.; Hung, I.F.; Cheng, V.C.; Chan, J.F.; Yuen, K.Y. Consistent detection of 2019 novel coronavirus in saliva. Clin. Infect. Dis. , 2020, 71(15), 841-843.
[http://dx.doi.org/10.1093/cid/ciaa149] [PMID: 32047895]

[5]

Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. China novel coronavirus investigating and research team. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. , 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]

[6]

Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet , 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]

[7]

Paraskevis, D; Kostaki, EG; Magiorkinis, G; Panayiotakopoulos, G; Tsiodras, S. Full-genome evolutionary analysis of the novel Corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect. Genet. Evol. , 2020, 79, 104212.

[9]

Zhonghua, L.X.B.X.Z.Z. Epidemiology working group for NCIP epidemic response, chinese center for disease control and prevention. [The epidemiological characteristics of an outbreak of 2019 novel Coronavirus Diseases (COVID-19) in China]. Zhonghua Liu Xing Bing Xue Za Zhi , 2020, 41(2), 145-151.
[http://dx.doi.org/10.3760/cma.j.issn.0254-6450.2020.02.003] [PMID: 32064853]

[10]

Soy, M.; Keser, G.; Atagündüz, P.; Tabak, F.; Atagündüz, I.; Kayhan, S. Cytokine storm in COVID-19: Pathogenesis and overview of anti-inflammatory agents used in treatment. Clin. Rheumatol. , 2020, 39(7), 2085-2094.
[http://dx.doi.org/10.1007/s10067-020-05190-5] [PMID: 32474885]

[12]

Sarzi-Puttini, P.; Giorgi, V.; Sirotti, S.; Marotto, D.; Ardizzone, S.; Rizzardini, G.; Antinori, S.; Galli, M. COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clin. Exp. Rheumatol. , 2020, 38(2), 337-342.
[PMID: 32202240]

[13]

Vellingiri, B.; Jayaramayya, K.; Iyer, M.; Narayanasamy, A.; Govindasamy, V.; Giridharan, B.; Ganesan, S.; Venugopal, A.; Venkatesan, D.; Ganesan, H.; Rajagopalan, K.; Rahman, P.K.S.M.; Cho, S.G.; Kumar, N.S.; Subramaniam, M.D. COVID-19: A promising cure for the global panic. Sci. Total Environ. , 2020, 725, 138277.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138277] [PMID: 32278175]

[14]

Ho, L.T.F.; Chan, K.K.H.; Chung, V.C.H.; Leung, T.H. Highlights of traditional Chinese medicine frontline expert advice in the China national guideline for COVID-19. Eur. J. Integr. Med. , 2020, 36, 101116.
[http://dx.doi.org/10.1016/j.eujim.2020.101116] [PMID: 32292529]

[18]

Ciobotaru, O.R.; Lupu, M-N.; Rebegea, L.; Ciobotaru, O.C.; Duca, O.M.; Tatu, A.L. Dexamethasone-chemical structure and mechanisms of action in prophylaxis of postoperative side effects. Rev Chim , 2019, 70, 843-847.
[http://dx.doi.org/10.37358/RC.19.3.7017]

[19]

Rankovic, Z.; Hargreaves, R.; Bingham, M. Drug discovery and medicinal chemistry for psychiatric disorders. Cambridge: Royal Soc. Chem. , 2016, 286.

[20]

Arth, G.E.; Fried, J.; Johnston, D.B.R.; Hoff, D.R.; Sarett, L.H.; Silber, R.H. 16-Methylated steroids. II. 16α-Methyl analogs of cortisone, a new group of anti-inflammatory steroids. 9α-Halo derivatives. J. Am. Chem. Soc. , 1958, 80, 3161-3163.
[http://dx.doi.org/10.1021/ja01545a063]

[22]

Toader, E.; Bahrin, L.G.; Jones, P.G.; Hopf, H.; Sarbu, L.G.; Stoleriu, G. Synthesis of new morpholine containing flavonoids with potential biological applications. Rev. Chim. (Bucharest) , 2016, 67, 1520.

[23]

Lednicer, D. Steroids; part 2: compounds related to progesterone, cortisone, and cholesterol. Strateg. Org. Drug Synth. Des; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009, pp. 161-190.

[25]

WHO Technical Report Series 954 EVALUATION OF CERTAIN VETERINARY DRUG RESIDUES IN FOOD Seventieth report of the Joint FAO/WHO Expert Committee on Food Additives Food and Agriculture Organization of the United Nations World Health Organization 2009.

[26]

Teo, Y.L.; Saetaew, M.; Chanthawong, S.; Yap, Y.S.; Chan, E.C.; Ho, H.K.; Chan, A. Effect of CYP3A4 inducer dexamethasone on hepatotoxicity of lapatinib: Clinical and in vitro evidence. Breast Cancer Res. Treat. , 2012, 133(2), 703-711.
[http://dx.doi.org/10.1007/s10549-012-1995-7] [PMID: 22370628]

[27]

Wallner, B.P.; Mattaliano, R.J.; Hession, C.; Cate, R.L.; Tizard, R.; Sinclair, L.K.; Foeller, C.; Chow, E.P.; Browing, J.L.; Ramachandran, K.L. Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. Nature , 1986, 320(6057), 77-81.
[http://dx.doi.org/10.1038/320077a0] [PMID: 2936963]

[29]

Blackwell, G.J.; Carnuccio, R.; Di Rosa, M.; Flower, R.J.; Parente, L.; Persico, P. Macrocortin: a polypeptide causing the anti-phospholipase effect of glucocorticoids. Nature , 1980, 287(5778), 147-149.
[http://dx.doi.org/10.1038/287147a0] [PMID: 6893620]

[33]

Maschalidi, S.; Sepulveda, F.E.; Garrigue, A.; Fischer, A.; de Saint Basile, G. Therapeutic effect of JAK1/2 blockade on the manifestations of hemophagocytic lymphohistiocytosis in mice. Blood , 2016, 128(1), 60-71.
[http://dx.doi.org/10.1182/blood-2016-02-700013] [PMID: 27222478]

[34]

Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; Zhang, Y.; Song, J.; Wang, S.; Chao, Y.; Yang, Z.; Xu, J.; Zhou, X.; Chen, D.; Xiong, W.; Xu, L.; Zhou, F.; Jiang, J.; Bai, C.; Zheng, J.; Song, Y. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. , 2020.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]

[35]

Zhong, J.; Tang, J.; Ye, C.; Dong, L. The immunology of (COVID)-19: is immune modulation an option for treatment? Lancet Rheumatol. , 2020.

[36]

Villar, J.; Ferrando, C.; Martínez, D.; Ambrós, A.; Muñoz, T.; Soler, J.A.; Aguilar, G.; Alba, F.; González-Higueras, E.; Conesa, L.A.; Martín-Rodríguez, C.; Díaz-Domínguez, F.J.; Serna-Grande, P.; Rivas, R.; Ferreres, J.; Belda, J.; Capilla, L.; Tallet, A.; Añón, J.M.; Fernández, R.L.; González-Martín, J.M. dexamethasone in ARDS network. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir. Med. , 2020, 8(3), 267-276.
[http://dx.doi.org/10.1016/S2213-2600(19)30417-5] [PMID: 32043986]

[37]

Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Correction to: clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. , 2020, 46(6), 1294-1297.
[http://dx.doi.org/10.1007/s00134-020-06028-z] [PMID: 32253449]

[38]

Meijvis, S.C.A.; Hardeman, H.; Remmelts, H.H.F.; Heijligenberg, R.; Rijkers, G.T.; van Velzen-Blad, H.; Voorn, G.P.; van de Garde, E.M.; Endeman, H.; Grutters, J.C.; Bos, W.J.; Biesma, D.H. Dexamethasone and length of hospital stay in patients with community-acquired pneumonia: a randomised, double-blind, placebo-controlled trial. Lancet , 2011, 377(9782), 2023-2030.
[http://dx.doi.org/10.1016/S0140-6736(11)60607-7] [PMID: 21636122]