Metrology and Nanometrology at Agricultural/Food/Nutraceutical

Interface: An Updated Shot (original) (raw)

Open Access Journals Promotions 2

Nanometrology has been considered a key to the future of nanotechnology recently. It is particularly important for nanoparticle market development that is commonly applied in different areas of science. The adoption of nanotechnologies in food and agrochemical industries represents a new frontier, with particular regard to plant defence against pathogen agents. Nanometrology deals with a broad range of measurements, as well as chemical and structural characterization, electronic, thermal, and mechanical properties, fabrication and monitoring of nanodevices, and theoretical modelling of nanomaterials properties. Besides the scientific and technological values of a global standard offered by nanometrology, there are also several industry-related values. In this paper, the most common areas of science emphasized the most frequently applied methods by the example of techniques/tools that have been described from a metrological standpoint at a nanosize scale. Therefore, at the microscopic scale may be widely applied: optical techniques, for example, X-ray Photoelectron Spectroscopy (XPS), or optical transmission. Moreover, Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) can be used for microscopic characterization, while Scanning Probe Microscopy (SPM), consisting of Scanning- Tunnelling Microscopy (STM) and Atomic Force Microscopy (AFM), as well as Transmission- Electron Microscopy (TEM), can be employed at the nanoscopic scale. The review has also mentioned Secondary Ion Mass Spectroscopy (SIMS) to analyze secondary ions using a mass spectrometer. In addition, Electron Energy Loss Spectroscopy (EELS) using high-energy electrons from sample penetration or Fourier Transform Infrared Spectroscopy (FTIR) to obtain the infrared spectrum of a sample were also presented. Particle size analysis can be analyzed by performing Small-/Wide-Angle X-ray Scattering (SAXS/WAXS) and Dynamic Light Scattering (DLS) techniques. A specific metrology approach is required for most nanoparticle-based products; that is, the way nanometrology is significant for production quality control and for toxicology studies. This review gives an update on the metrological approaches and applications, with particular attention to nanometrology for different areas of scientific research, i.e., food, agricultural, nutraceutical, biological and medical ones. The novelty character of this paper is to discuss the application of nanotechnologies under metrological principles and approaches at the interface of different integrated, multipurpose and multidisciplinary application fields. The following topics are explored here: i) metrology: definitions, principles, and main features; ii) calibration methods and techniques; iii) measurement methods and systems; iv) proficiency testing; v) nanometrology. Particularly, nanometrology was highlighted in the following directions: significance of the nanodimension, nanometrology in chemical research, nanometrology for the characterization of nanoparticles, nanometrology in biological and medical sciences, mechanical nanometrology, electrical nanometrology and applications of nanometrology in agriculture and food industry.

Keywords: Metrological approach, nanometrological applications, microscopy, nanodevices, nanomaterials properties, nanoscopic scale and applications.

[2]

Unger, W.E. International standardization and metrology as tools to address the comparability and reproducibility challenges in XPS measurements. J. Vac. Sci. Technol. A , 2020, 38(2)021201
[http://dx.doi.org/10.1116/1.5131074]

[6]

Weckenmann, A.; Krämer, P.; Akkasoglu, G. Metrology-Base for scientific cognition and technical production. AIP Conf. Proc; , 2012. 1431, 283
[http://dx.doi.org/10.1063/1.4707576]

[7]

Kirmond, L. Localization strategy for business-to-business digital marketing with a focus on industrial metrology.In: Digital and Social Media Marketing; Advances in Theory and Practice of Emerging Markets; Springer: Cham, 2020, pp. 293-297.
[http://dx.doi.org/10.1007/978-3-030-24374-6_21]

[8]

Mungmunpuntipantip, R. Legal metrology: Case study on cheating practice; Indian J. Health Med. Law, 2020.

[9]

Slaev, V.A.; Chunovkina, A.G.; Mironovsky, L.A. Metrology and theory of measurement; Walter de Gruyter GmbH & Co KGBerlin: Germany , 2019.

[10]

Ramsden, J. Nanotechnology: An introduction, 2nd Edition; William Andrew, Elsevier: Kidlington Oxford, United Kingdom, 2016.

[12]

Vim, I. International vocabulary of basic and general terms in metrology (VIM). International Organization; , 2004 2004, 09-1.

[14]

Weights, I.B.O.; Taylor, B.N.; Thompson, A. The international system of units (SI); US Department of Commerce, Technology Administration, National Institute of Standards and Technology; NIST Special Publication 330, 2001.

[18]

Hsu, C-C. Methods and devices with sensor time calibration; Google Patents, 2020.

[19]

Kong, H-W.; Yu, Z.; Wen, Z.; Jing, Y.; Chen, S-B. Systems and methods for test and calibration of MIMO antenna arrays including a digital interface; Google Patents, 2020.

[23]

Wilby, R.J. Semiconductor wafer metrology apparatus and method. International Patent: WO2009044121A1 , 2014.

[24]

Bentouati, D.; Durgut, Y.; Otal, P.; Plimmer, M.; Pražák, D.; Sabuga, W.; Ehlers, S.; Sınır, E. Calibration methods for negative gauge pressure down to− 100 kPa. Meas. Sci. Technol. , 2018, 29(3), 35007.
[http://dx.doi.org/10.1088/1361-6501/aa92ea]

[25]

Ştefănescu, D.M. Metrological technical data in the measurement process, with examples in weighing cells.Handbook of Force Transducers; Springer: Berlin, Germany, 2020, pp. 13-28.
[http://dx.doi.org/10.1007/978-3-030-35322-3_2]

[30]

Bensebaa, F. Nanoparticle fundamentals. Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2013, Vol. 19, pp. 1-84.

[31]

Lojkowski, W.; Turan, R.; Proykova, A.; Daniszewska, A. Nanometrology. Eighth Nanoforum Report Nanoforum, 2006. Available from:www.nanoforum.org (Accessed on: December 26, 2021)

[32]

Souto, E.B.; Silva, G.F.; Dias-Ferreira, J.; Zielinska, A.; Ventura, F.; Durazzo, A.; Lucarini, M.; Novellino, E.; Santini, A. Nanopharmaceutics: Part I-Clinical Trials Legislation and Good Manufacturing Practices (GMP) of Nanotherapeutics in the EU. Pharmaceutics , 2020, 12(2)E146
[http://dx.doi.org/10.3390/pharmaceutics12020146] [PMID: 32053962]

[33]

Souto, E.B.; Silva, G.F.; Dias-Ferreira, J.; Zielinska, A.; Ventura, F.; Durazzo, A.; Lucarini, M.; Novellino, E.; Santini, A. Nanopharmaceutics: Part II - Production scales and clinically compliant production methods. Nanomaterials , 2020, 10(3), 455.
[http://dx.doi.org/10.3390/nano10030455] [PMID: 32143286]

[35]

Masjedi-Arani, M.; Salavati-Niasari, M. Novel synthesis of Zn2GeO4/graphene nanocomposite for enhanced electrochemical hydrogen storage performance. Int. J. Hydrogen Energy , 2017, 42(27), 17184-17191.
[http://dx.doi.org/10.1016/j.ijhydene.2017.05.118]

[36]

Salehabadi, A.; Salavati-Niasari, M.; Ghiyasiyan-Arani, M. Self-assembly of hydrogen storage materials based multi-walled carbon nanotubes (MWCNTs) and Dy3Fe5O12 (DFO) nanoparticles. J. Alloys Compd. , 2018, 745, 789-797.
[http://dx.doi.org/10.1016/j.jallcom.2018.02.242]

[37]

Salavati-Niasari, M.; Fereshteh, Z.; Davar, F. Synthesis of oleylamine capped copper nanocrystals via thermal reduction of a new precursor. Polyhedron , 2009, 28(1), 126-130.
[http://dx.doi.org/10.1016/j.poly.2008.09.027]

[38]

Zinatloo-Ajabshir, S.; Salavati-Niasari, M.; Zinatloo-Ajabshir, Z. Nd2Zr2O7-Nd2O3 nanocomposites: New facile synthesis, characterization and investigation of photocatalytic behaviour. Mater. Lett. , 2016, 180, 27-30.
[http://dx.doi.org/10.1016/j.matlet.2016.05.094]

[40]

Panteghini, M.; Braga, F. Implementation of metrological traceability in laboratory medicine: Where we are and what is missing. Clin. Chem. Lab. Med. , 2020, 58(8), 1200-1204.
[http://dx.doi.org/10.1515/cclm-2019-1128]

[43]

Tolbert, A.; Ragauskas, A.J. Advances in understanding the surface chemistry of lignocellulosic biomass via time of flight secondary ion mass spectrometry. Energy Sci. Eng. , 2017, 5(1), 5-20.
[http://dx.doi.org/10.1002/ese3.144]

[44]

Goacher, R.E.; Jeremic, D.; Master, E.R. Expanding the library of secondary ions that distinguish lignin and polysaccharides in time-of-flight secondary ion mass spectrometry analysis of wood. Anal. Chem. , 2011, 83(3), 804-812.
[http://dx.doi.org/10.1021/ac1023028] [PMID: 21190327]

[45]

Reed, D.A.; Schueler, B.W.; Newcome, B.H.; Smedt, R.; Bevis, C. Systems and approaches for semiconductor metrology and surface analysis using secondary ion mass spectrometry. Patent US- 10056242-B2 , 2021.

[46]

Chen, Z.; Weyland, M.; Sang, X.; Xu, W.; Dycus, J.H.; LeBeau, J.M.; D’Alfonso, A.J.; Allen, L.J.; Findlay, S.D. Quantitative atomic resolution elemental mapping via absolute-scale energy dispersive X-ray spectroscopy. Ultramicroscopy , 2016, 168, 7-16.
[http://dx.doi.org/10.1016/j.ultramic.2016.05.008] [PMID: 27258645]

[47]

Dejous, C.; Hallil, H.; Raimbault, V.; Rukkumani, R.; Yakhmi, J.V. Using microsensors to promote the development of innovative therapeutic nanostructures. Nanostructures for Novel Therapy; Ficai, D.; Mihai Grumezescu, A., Eds.; Elsevier: Amsterdam, The Netherlands,, 2017, pp. 539-566.
[http://dx.doi.org/10.1016/B978-0-323-46142-9.00020-7]

[48]

Lucarini, M.; Durazzo, A.; Kiefer, J.; Santini, A.; Lombardi-Boccia, G.; Souto, E.B.; Romani, A.; Lampe, A.; Ferrari Nicoli, S.; Gabrielli, P.; Bevilacqua, N.; Campo, M.; Morassut, M.; Cecchini, F. Grape seeds: Chromatographic profile of fatty acids and phenolic compounds and qualitative analysis by FTIR-ATR spectroscopy. Foods , 2019, 9(1), 10.
[http://dx.doi.org/10.3390/foods9010010] [PMID: 31877706]

[49]

Mahesar, S.A.; Lucarini, M.; Durazzo, A.; Santini, A.; Lampe, A.I.; Kiefer, J. Application of infrared spectroscopy for functional compounds evaluation in olive oil: a current snapshot. J. Spectrosc. , 2019, 4, 1-11.
[http://dx.doi.org/10.1155/2019/5319024]

[50]

Zielińska, A.; Nowak, I. Solid lipid nanoparticles and nanostructured lipid carriers as novel carriers for cosmetic ingredients. Nanobiomaterials in Galenic Formulations and Cosmetics; Elsevier, 2016, pp. 231-255.
[http://dx.doi.org/10.1016/B978-0-323-42868-2.00010-3]

[51]

Jamakhani, M.; Jadhav, M.; Kamble, G.; Gambhire, V. Nanometrology in biological and medical sciences. Int. J. Adv. Biotechnol. Res. , 2011, 2, 213-223.

[54]

Ali, S.H.; Almaatoq, M.M.; Mohamed, A.S. Recent progress in nanometrology techniques for object characterization. Int. J. Eng. Res. Appl. , 2013, 3, 1343-1366.

[55]

Kassies, R.; van der Werf, K.O.; Lenferink, A.; Hunter, C.N.; Olsen, J.D.; Subramaniam, V.; Otto, C. Combined AFM and confocal fluorescence microscope for applications in bio-nanotechnology. J. Microsc. , 2005, 217(Pt 1), 109-116.
[http://dx.doi.org/10.1111/j.0022-2720.2005.01428.x] [PMID: 15655068]

[57]

Jose, S.; Cinu, T.A.; Sebastian, R.; Shoja, M.H.; Aleykutty, A.N.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B. Transferrin-conjugated docetaxel-PLGA nanoparticles for tumor targeting: influence on MCF-7 cell cycle. Polymers , 2019, 11(11)E1905
[http://dx.doi.org/10.3390/polym11111905] [PMID: 31752417]

[58]

Souto, E.B.; Souto, S.B.; Campos, J.R.; Severino, P.; Pashirova, T.N.; Zakharova, L.Y.; Silva, A.M.; Durazzo, A.; Lucarini, M.; Izzo, A.A.; Santini, A. Nanoparticle delivery systems in the treatment of diabetes complications. Molecules , 2019, 24(23)E4209
[http://dx.doi.org/10.3390/molecules24234209] [PMID: 31756981]

[59]

Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; Silva, A.M.; Durazzo, A.; Santini, A.; Garcia, M.L.; Souto, E.B. Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials , 2020, 10(2), 292.
[http://dx.doi.org/10.3390/nano10020292] [PMID: 32050443]

[60]

Souto, E.B.; Fernandes, A.R.; Coutinho, T.E.; Martins-Gomes, C.; Durazzo, A.; Lucarini, M.; Souto, S.B.; Silva, A.M.; Santini, A. Nanomaterials for skin delivery of cosmeceuticals and pharmaceuticals. Appl. Sci. , 2020, 10(5), 1594.
[http://dx.doi.org/10.3390/app10051594]

[61]

Souto, E.B.; Ribeiro, A.F.; Ferreira, M.I.; Teixeira, M.C.; Shimojo, A.A.M.; Soriano, J.L.; Naveros, B.C.; Durazzo, A.; Lucarini, M.; Souto, S.B.; Santini, A. New nanotechnologies for the treatment and repair of skin burns infections. Int. J. Mol. Sci. , 2020, 21(2), 393.
[http://dx.doi.org/10.3390/ijms21020393] [PMID: 31936277]

[62]

Rigon, R.B.; Fachinetti, N.; Severino, P.; Durazzo, A.; Lucarini, M.; Atanasov, A.G.; El Mamouni, S.; Chorilli, M.; Santini, A.; Souto, E.B. Quantification of trans-resveratrol-loaded solid lipid nanoparticles by a validated reverse-phase HPLC photodiode array. Appl. Sci. , 2019, 9(22), 4961.
[http://dx.doi.org/10.3390/app9224961]

[63]

Souto, E.B.; Souto, S.B.; Zielinska, A.; Durazzo, A.; Lucarini, M.; Santini, A.; Horbańczuk, O.K.; Atanasov, A.G.; Marques, C.; Andrade, L.N.; Silva, A.M.; Severino, P. Perillaldehyde 1,2-epoxide loaded SLN-tailored mAb: Production, physicochemical characterization and in vitro cytotoxicity profile in MCF-7 cell lines. Pharmaceutics , 2020, 12(2), 161.
[http://dx.doi.org/10.3390/pharmaceutics12020161] [PMID: 32079103]

[64]

Souto, E.B.; Zielinska, A.; Souto, S.B.; Durazzo, A.; Lucarini, M.; Santini, A.; Silva, A.M.; Atanasov, A.G.; Marques, C.; Andrade, L.N.; Severino, P. (+)-Limonene 1,2-epoxide-loaded SLN: Evaluation of drug release, antioxidant activity and cytotoxicity in HaCaT cell line. Int. J. Mol. Sci. , 2020, 21(4)E1449
[http://dx.doi.org/10.3390/ijms21041449] [PMID: 32093358]

[65]

Vieira, R.; Severino, P.; Nalone, L.A.; Souto, S.B.; Silva, A.M.; Lucarini, M.; Durazzo, A.; Santini, A.; Souto, E.B. Sucupira oil-loaded Nanostructured Lipid Carriers (NLC): Lipid screening, factorial design, release profile, and cytotoxicity. Molecules , 2020, 25(3), 685.
[http://dx.doi.org/10.3390/molecules25030685] [PMID: 32041134]

[66]

Karami, M.; Ghanbari, M.; Abbas Alshamsi, H.; Rashki, S.; Salavati-Niasari, M. Facile fabrication of Tl4HgI6 nanostructures as novel antibacterial and antibiofilm agents and photocatalysts in the degradation of organic pollutants. Inorg. Chem. Front. , 2021, 8(10), 2442-2460.
[http://dx.doi.org/10.1039/D1QI00155H]

[67]

Ansari, F.; Sobhani, A.; Salavati-Niasari, M. Simple sol-gel synthesis and characterization of new CoTiO3/CoFe2O4 nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents. J. Colloid Interface Sci. , 2018, 514(514), 723-732.
[http://dx.doi.org/10.1016/j.jcis.2017.12.083] [PMID: 29310102]

[69]

Mortazavi-Derazkola, S.; Salavati-Niasari, M.; Amiri, O.; Abbasi, A. Fabrication and characterization of Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution. J. Ener. Chem. , 2017, 26(1), 17-23.
[http://dx.doi.org/10.1016/j.jechem.2016.10.015]

[71]

Leach, R.K.; Boyd, R.; Burke, T.; Danzebrink, H-U.; Dirscherl, K.; Dziomba, T.; Gee, M.; Koenders, L.; Morazzani, V.; Pidduck, A.; Roy, D.; Unger, W.E.; Yacoot, A. The European nanometrology landscape. Nanotechnology , 2011, 22(6), 62001.
[http://dx.doi.org/10.1088/0957-4484/22/6/062001] [PMID: 21212479]

[72]

Karagkiozaki, V.; Vavoulidis, E.; Karagiannidis, P.G.; Gioti, M.; Fatouros, D.G.; Vizirianakis, I.S.; Logothetidis, S. Development of a nanoporous and multilayer drug-delivery platform for medical implants. Int. J. Nanomedicine , 2012, 7, 5327-5338.
[http://dx.doi.org/10.2147/IJN.S31185] [PMID: 23071394]

[73]

Koumoulos, E.P.; Tofail, S.A.; Silien, C.; De Felicis, D.; Moscatelli, R.; Dragatogiannis, D.; Bemporad, E.; Sebastiani, M.; Charitidis, C.A. Metrology and nano-mechanical tests for nano-manufacturing and nano-bio interface: Challenges & future perspectives. Mater. Des. , 2018, 137, 446-462.
[http://dx.doi.org/10.1016/j.matdes.2017.10.035]

[75]

Benetti, G.; Caddeo, C.; Melis, C.; Ferrini, G.; Giannetti, C.; Winckelmans, N.; Bals, S.; Van Bael, M.J.; Cavaliere, E.; Gavioli, L.; Banfi, F. Bottom-up mechanical nanometrology of granular Ag nanoparticles thin films. J. Phys. Chem. C , 2017, 121(40), 22434-22441.
[http://dx.doi.org/10.1021/acs.jpcc.7b05795]

[76]

Luo, J.; Guo, D. Tribology in nanomanufacturing—interaction between nanoparticles and a solid surface.Advanced Tribology; Luo, J.; Meng, Y.; Shao, T; Zhao, Q., Ed.; Springer: Berlin, Heidelberg, 2009.
[http://dx.doi.org/10.1007/978-3-642-03653-8_3]

[77]

Brundle, C.; Conti, G.; Mack, P. XPS and angle resolved XPS, in the semiconductor industry: Characterization and metrology control of ultra-thin films. J. Electron Spectrosc. Relat. Phenom. , 2010, 178, 433-448.
[http://dx.doi.org/10.1016/j.elspec.2010.03.008]

[79]

Holloway, C.L.; Simons, M.T.; Gordon, J.A.; Dienstfrey, A.; Anderson, D.A.; Raithel, G. Electric field metrology for SI traceability: Systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor. J. Appl. Phys. , 2017, 121(23)233106
[http://dx.doi.org/10.1063/1.4984201]

[80]

Dolde, F.; Fedder, H.; Doherty, M.W.; Nöbauer, T.; Rempp, F.; Balasubramanian, G.; Wolf, T.; Reinhard, F.; Hollenberg, L.C.; Jelezko, F.; Wrachtrup, J. Electric-field sensing using single diamond spins. Nat. Phys. , 2011, 7(6), 459-463.
[http://dx.doi.org/10.1038/nphys1969]

[81]

Barson, M.S.; Peddibhotla, P.; Ovartchaiyapong, P.; Ganesan, K.; Taylor, R.L.; Gebert, M.; Mielens, Z.; Koslowski, B.; Simpson, D.A.; McGuinness, L.P.; McCallum, J.; Prawer, S.; Onoda, S.; Ohshima, T.; Bleszynski Jayich, A.C.; Jelezko, F.; Manson, N.B.; Doherty, M.W. Nanomechanical sensing using spins in diamond. Nano Lett. , 2017, 17(3), 1496-1503.
[http://dx.doi.org/10.1021/acs.nanolett.6b04544] [PMID: 28146361]

[82]

Wu, B.; Kumar, A. Extreme ultraviolet lithography: A review. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. , 2007, 25(6), 1743-1761.
[http://dx.doi.org/10.1116/1.2794048]

[85]

Balah, M.A.; Pudake, R.N. Use nanotools for weed control and exploration of weed plants in nanotechnology. Nanoscience for Sustainable Agriculture; Pudake, R.N.; Chauhan, N; Kole, C., Ed.; Springer International Publishing: Cham, Switzerland, 2019, pp. 207-231.
[http://dx.doi.org/10.1007/978-3-319-97852-9_10]

[86]

Chen, H.; Seiber, J.N.; Hotze, M. ACS Select on nanotechnology in food and agriculture: A perspective on implications and applications. J. Agric. Food Chem. , 2014, 62(6), 1209-1212.
[http://dx.doi.org/10.1021/jf5002588] [PMID: 24479582]

[87]

Carbone, C.; Martins-Gomes, C.; Caddeo, C.; Silva, A.M.; Musumeci, T.; Pignatello, R.; Puglisi, G.; Souto, E.B. Mediterranean essential oils as precious matrix components and active ingredients of lipid nanoparticles. Int. J. Pharm. , 2018, 548(1), 217-226.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.064] [PMID: 29966744]

[88]

Carbone, C.; Teixeira, M.D.C.; Sousa, M.D.C.; Martins-Gomes, C.; Silva, A.M.; Souto, E.M.B.; Musumeci, T. Clotrimazole-loaded mediterranean essential oils NLC: A synergic treatment of Candida skin infections. Pharmaceutics , 2019, 11(5)E231
[http://dx.doi.org/10.3390/pharmaceutics11050231] [PMID: 31085997]

[89]

Pereira, I.; Zielińska, A.; Ferreira, N.R.; Silva, A.M.; Souto, E.B. Optimization of linalool-loaded solid lipid nanoparticles using experimental factorial design and long-term stability studies with a new centrifugal sedimentation method. Int. J. Pharm. , 2018, 549(1-2), 261-270.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.068] [PMID: 30075252]

[91]

Zielińska, A.; Martins-Gomes, C.; Ferreira, N.R.; Silva, A.M.; Nowak, I.; Souto, E.B. Anti-inflammatory and anti-cancer activity of citral: Optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMiSizer®. Int. J. Pharm. , 2018, 553(1-2), 428-440.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.065] [PMID: 30385373]

[94]

Bollen, A.F. Traceability in postharvest systems. In: Postharvest Handling, 2nd ed; Florkowski, W.J.; Shewfelt, R.L.; Brueckner, B.; Prussia, S.E., Eds.; Academic Press: San Diego, United States, 2009, pp. 333-34.
[http://dx.doi.org/10.1016/B978-0-12-374112-7.00012-3]

[97]

Li-Chan, E.C.Y. Introduction to vibrational spectroscopy in food science. In: Handbook of Vibrational Spectroscopy; Wiley: New York, United States, 2001, 1, pp. 3-29.
[http://dx.doi.org/10.1002/0470027320.s8934]

[99]

Zielińska, A.; Wójcicki, K.; Klensporf-Pawlik, D.; Dias-Ferreira, J.; Lucarini, M.; Durazzo, A.; Lucariello, G.; Capasso, R.; Santini, A.; Souto, E.B.; Nowak, I.; Cuisset, A. Chemical and physical properties of meadowfoam seed oil and extra virgin olive oil: Focus on vibrational spectroscopy. J. Spectrosc. , 2020, _2020_8870170
[http://dx.doi.org/10.1155/2020/8870170]

[100]

Durazzo, A.; Kiefer, J.; Lucarini, M.; Camilli, E.; Marconi, S.; Gabrielli, P.; Aguzzi, A.; Gambelli, L.; Lisciani, S.; Marletta, L. Qualitative analysis of traditional italian dishes. FTIR Approach. , 2018, 10, 4112.

[102]

Medvedevskikh, S.V.; Sobina, E.P.; Kremleva, O.N.; Medvedevskikh, M.Y.; Sobina, A.V.; Taraeva, N.S. Metrological traceability of coomet reference materials. Part. 1. International practice in establishing traceability of reference material certified values. Meas. Tech. , 2021, 64(8), 633-637.
[http://dx.doi.org/10.1007/s11018-021-01983-5]

[103]

Henson, A. Metrological traceability: A global perspective. Proceedings of the International School of Physics "Enrico Fermi". New Frontiers for Metrology: From Biology and Chemistry to Quantum and Data Science 2021, 206, pp. 215-230.
[http://dx.doi.org/10.3254/ENFI210027]