Local Maxima and the Expected Euler Characteristic of Excursion Sets of χ 2, F and t Fields | Advances in Applied Probability | Cambridge Core (original) (raw)

Abstract

The maximum of a Gaussian random field was used by Worsley et al. (1992) to test for activation at an unknown point in positron emission tomography images of blood flow in the human brain. The Euler characteristic of excursion sets was used as an estimator of the number of regions of activation. The expected Euler characteristic of excursion sets of stationary Gaussian random fields has been derived by Adler and Hasofer (1976) and Adler (1981). In this paper we extend the results of Adler (1981) to χ2, F and t fields. The theory is applied to some three-dimensional images of cerebral blood flow from a study on pain perception.

Type

Stochastic Geometry and Statistical Applications

Copyright

Copyright © Applied Probability Trust 1994

References

Adler, R. J. (1981) The Geometry of Random Fields. Wiley, New York.Google Scholar

Adler, R. J. and Hasofer, A. M. (1976) Level crossings for random fields. Ann. Prob 4, 1–12.CrossRefGoogle Scholar

Anderson, T. W. (1984) An Introduction to Multivariate Statistical Analysis, 2nd ed. Wiley, New York.Google Scholar

Beaky, M. M., Scherrer, R. J. and Villumsen, J. V. (1992) Topology of large scale structure in seeded hot dark matter models. Astrophysical J. 387, 443–448.CrossRefGoogle Scholar

Gott, J. R., Park, C., Juskiewicz, R., Bies, W. E., Bennett, D. P., Bouchet, F. R. and Stebbins, A. (1990) Topology of microwave background fluctuations: theory. Astrophysical J. 352, 1–14.Google Scholar

Hamilton, A. J. S. (1988) The topology of fractal universes. Publ. Astronom. Soc. Pacific 100, 1343–1350.Google Scholar

Hamilton, A. J. S., Gott, J. R. and Weinberg, D. (1986) The topology of large-scale structure in the universe. Astrophysical J. 309, 1–12.CrossRefGoogle Scholar

Hasofer, A. M. (1978) Upcrossings of random fields. Suppl. Adv. Appl. Prob. 10, 14–21.Google Scholar

Mandelbrot, B. B. (1982) The Fractal Geometry of Nature. Freeman, New York.Google Scholar

Smoot, G. F., Bennett, C. L., Kogut, A., Wright, E. L., Aymon, J., Boggess, N. W., Cheng, E. S., De Amici, G., Gulkis, S., Hauser, M. G., Hinshaw, G., Jackson, P. D., Janssen, M., Kaita, E., Kelsall, T., Keegstra, P., Lineweaver, C., Lowenstein, K., Lubin, P., Mather, J., Meyer, S. S., Moseley, S. H., Murdock, T., Rokke, L., Silverberg, R. F., Tenorio, L., Weiss, R. and Wilkinson, D. T. (1992) Structure in the COBE differential microwave radiometer first-year maps. Astrophysical J. 396, L1–L5.Google Scholar

Talbot, J. D., Marrett, S., Evans, A. C., Meyer, E., Bushnell, M. C. and Duncan, G. H. (1991) Multiple representations of pain in human cerebral cortex. Science 251, 1355–1358.CrossRefGoogle ScholarPubMed

Worsley, K. J., Evans, A. C., Marrett, S. and Neelin, P. (1992) A three dimensional statistical analysis for CBF activation studies in human brain. J. Cerebral Blood Flow and Metabolism 12, 900–918.Google Scholar

Worsley, K. J., Evans, A. C., Marrett, S. and Neelin, P. (1993) Detecting changes in random fields and applications to medical images. J. Amer. Statist. Assoc. .Google Scholar