Diffusion models in population genetics | Journal of Applied Probability | Cambridge Core (original) (raw)

Extract

Population genetics is that branch of genetics, whose object is the study of the genetical make-up of natural populations. By investigating the laws which govern the genetic structure of natural populations, we intend to clarify the mechanism of evolution.

References

[1] Bodmer, W. F. (1960) Discrete stochastic processes in population genetics. J.R. Statist. Soc. B 22, 218–244.Google Scholar

[2] Cavalli-Sforza, L.L. and Conterio, F. (1960) Analisi della fluttuazione di frequenze geniche nella popolazione della. Val Parma. Atti A.G.I. 5, 333–344.Google Scholar

[3] Crow, J.F. (1954) Breeding structure of populations II. Effective population number. Statistics and Mathematics in Biology. Kempthorne, etal. (ed). Iowa State College Press, Ames, Iowa.Google Scholar

[4] Crow, J.F. and Morton, N. (1955) Measurement of gene frequency drift in small populations. Evolution 9, 202–214.CrossRefGoogle Scholar

[5] Crow, J. F. and Kimura, ?. (1956) Some genetic problems in natural populations. Proc. Third Berkeley Symp. on Math. Statist. and Prob. 4, 1–22.Google Scholar

[6] Ewens, W. J. (1963) Numerical results and diffusion approximations in a genetic process. Biometrika 50, 241–249.Google Scholar

[7] Ewens, W. J. (1964) The pseudo-transient distribution and its uses in genetics. J. Appl. Prob. 1, 141–156.Google Scholar

[8] Feller, W. (1951) Diffusion processes in genetics. Proc. Second Berkeley Symp. on Math. Statist. and Prob. 227–246.Google Scholar

[9] Feller, W. (1952) The parabolic differential equations and the associated semigroup of transformations. Ann. Math. 55, 468–519.Google Scholar

[10] Fisher, R.A. (1922) On the dominance ratio. Proc. Roy. Soc. Edin. 42, 321–341.Google Scholar

[11] Fisher, R.A. (1930) The distribution of gene ratios for rare mutations. Proc. Roy. Soc. Edin. 50, 205–220.Google Scholar

[12] Fisher, R.A. (1953) Population genetics. Proc. Roy. Soc. London B 141, 510–523.Google Scholar

[13] Fisher, R.A. (1958) The Genetical Theory of Natural Selection (2nd revised ed.). Dover, New York.Google Scholar

[14] Fokker, A.D. (1914) Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. d. Phys. 43, 810–820.CrossRefGoogle Scholar

[15] Goldberg, S. (1950) On a singular diffusion equation. . Cornell University.Google Scholar

[16] Haldane, J.B.S. (1924) A mathematical theory of natural and artificial selection. Part I. Trans. Camb. Phil. Soc. 23, 19–41.Google Scholar

[17] Haldane, J.B.S. (1927) A mathematical theory of natural and artificial selection. Part V: Selection and mutation. Proc. Camb. Phil. Soc. 23, 838–844.Google Scholar

[18] Haldane, J.B.S. (1932) The Causes of Evolution. Harper and Brothers, New York.Google Scholar

[19] Haldane, J.B.S. (1949) Suggestions as to quantitative measurement of rates of evolution. Evolution 3, 51–56.CrossRefGoogle ScholarPubMed

[20] Karlin, S. and Mcgregor, J. (1962) On a genetics model of Moran. Proc. Camb. Phil. Soc. 58, 299–311.Google Scholar

[21] Kimura, M. (1954) Process leading to quasi-fixation of genes in natural populations due to random fluctuation of selection intensities. Genetics 39, 280–295.Google Scholar

[22] Kimura, M. (1955a) Solution of a process of random genetic drift with a continuous model. Proc. Nat. Acad. Sci. 41, 144–150.CrossRefGoogle ScholarPubMed

[23] Kimura, M. (1955b) Random genetic drift in multi-allelic locus. Evolution 9, 419–435.CrossRefGoogle Scholar

[24] Kimura, M. (1955C) Stochastic processes and distribution of gene frequencies under natural selection. Cold Spring Harbor Symp. 20, 33–53.CrossRefGoogle ScholarPubMed

[25] Kimura, M. (1956a) Random genetic drift in a tri-allelic locus: Exact solution with a continuous model. Biometrics 12, 57–66.Google Scholar

[26] Kimura, M. (1956b) Stochastic processes in population genetics. . Univ. of Wisconsin.Google Scholar

[27] Kimura, M. (1957) Some problems of stochastic processes in genetics. Ann. Math. Statist. 28, 882–901.CrossRefGoogle Scholar

[28] Kimura, M. (1958) On the change of population fitness by natural selection. Heredity 12, 145–167.CrossRefGoogle Scholar

[30] Kimura, M. and Crow, J.F. (1963) The measurement of effective population number. Evolution 17, 279–288.CrossRefGoogle Scholar

[31] Kolmogorov, A. (1931) über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104, 415–458.CrossRefGoogle Scholar

[32] Malecot, G. (1948) Les Mathématiques de l'Hérédité. Masson et Cie, Paris.Google Scholar

[33] Miller, G.F. (1962) The evaluation of eigenvalues of a differential equation arising in a problem in genetics. Proc. Camb. Phil. Soc. 58, 588–593.CrossRefGoogle Scholar

[34] Moran, P.A.P. (1958a) A general theory of the distribution of gene frequencies. I. Overlapping generations. Proc. Roy. Soc. London. B 149, 102–112.Google ScholarPubMed

[35] Moran, P.A.P. (1958b) A general theory of the distribution of gene frequencies. II. Nonoverlapping generations. Proc. Roy. Soc. London B 149, 113–116.Google Scholar

[36] Moran, P.A.P. (1958c) Random processes in genetics. Proc. Camb. Phil. Soc. 54, 60–71.Google Scholar

[37] Moran, P.A.P. (1961) The survival of a mutant under general conditions. Proc. Camb. Phil. Soc. 57, 304–314.CrossRefGoogle Scholar

[38] Moran, P.A.P. (1962) The Statistical Processes of Evolutionary Theory. Clarendon Press, Oxford.Google Scholar

[39] Morse, P.M. and Feshbach, H. (1953) Methods of Theoretical Physics. McGraw-Hill, New York.Google Scholar

[40] Planck, M. (1917) über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie. Sitz. der.preuss. Akad. 324–341.Google Scholar

[41] Robertson, A. (1960) A theory of limits in artificial selection. Proc. Roy. Soc. London B 153, 234–249.Google Scholar

[43] Stratton, J.A., Morse, P.M., Chu, L.J., and Hutner, R.A. (1941) Elliptic Cylinder and Spheroidal Wave Functions. John Wiley, New York.Google Scholar

[44] Stratton, J.A., Morse, P.M., Chu, L.J., Little, J.D.C., and Corbató, F.J. (1956) Spheroidal Wave Functions. Technology Press of M.I.T. & John Wiley, New York.Google Scholar

[45] Watterson, G.A. (1962) Some theoretical aspects of diffusion theory in population genetics. Ann. Math. Stat. 33, 939–957.Google Scholar

[46] Watterson, G.A. (1964) The application of diffusion theory to two population genetic models of Moran. J. Appl. Prob. 1, 233–246.CrossRefGoogle Scholar

[49] Wright, S. (1938a) The distribution of gene frequencies under irreversible mutation. Proc. Nat. Acad. Sci. 24, 253–259.CrossRefGoogle ScholarPubMed

[50] Wright, S. (1938b) The distribution of gene frequencies in populations of polyploids. Proc. Nat. Acad. Sci. 24, 372–377.CrossRefGoogle ScholarPubMed

[52] Wright, S. (1942) Statistical genetics and evolution. Bull. Amer. Math. Soc. 48, 223–246.CrossRefGoogle Scholar

[53] Wright, S. (1945) The differential equation of the distribution of gene frequencies. Proc. Nat. Acad. Sci. 31, 382–389.CrossRefGoogle ScholarPubMed

[54] Wright, S. (1948) On the roles of directed and random changes in gene frequency in the genetics of populations. Evolution 2, 279–294.CrossRefGoogle ScholarPubMed

[55] Wright, S. (1949) Adaptation and selection. In Genetics, Paleontology, and Evolution. Jepsen, et al. (ed.), Princeton Univ. Press.Google Scholar

[56] Wright, S. (1950) Population structure as a factor in evolution. In Moderne Biologie, Festschrift für Hans Nachtsheim, F. W. Peters, Berlin.Google Scholar

[57] Wright, S. (1952) The theoretical variance within and among subdivisions of a population that is in a steady state. Genetics 37, 312–321.Google Scholar

[58] Wright, S. and Kerr, W.E. (1954) Experimental studies of the distribution of gene frequencies in very small populations of Drosophila melanogaster. II. Bar. Evolution 8, 225–240.Google Scholar