Common Genetic Variation in GLP1R and Insulin Secretion in Response to Exogenous GLP-1 in Nondiabetic Subjects: A pilot study (original) (raw)
Pathophysiology / Complications| September 01 2010
1Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota;
Search for other works by this author on:
2Department of Information Engineering, University of Padua, Padua, Italy;
Search for other works by this author on:
Francesco Micheletto, MSC
2Department of Information Engineering, University of Padua, Padua, Italy;
Search for other works by this author on:
3Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota;
Search for other works by this author on:
4Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
Search for other works by this author on:
1Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota;
Search for other works by this author on:
1Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota;
Search for other works by this author on:
2Department of Information Engineering, University of Padua, Padua, Italy;
Search for other works by this author on:
1Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota;
Search for other works by this author on:
2Department of Information Engineering, University of Padua, Padua, Italy;
Search for other works by this author on:
1Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota;
Search for other works by this author on:
C.D.M. and F.M. contributed equally to this work.
Diabetes Care 2010;33(9):2074–2076
Citation
Airani Sathananthan, Chiara Dalla Man, Francesco Micheletto, Alan R. Zinsmeister, Michael Camilleri, Paula D. Giesler, Jeanette M. Laugen, Gianna Toffolo, Robert A. Rizza, Claudio Cobelli, Adrian Vella; Common Genetic Variation in GLP1R and Insulin Secretion in Response to Exogenous GLP-1 in Nondiabetic Subjects: A pilot study. _Diabetes Care 1 September 2010; 33 (9): 2074–2076. https://doi.org/10.2337/dc10-0200
Download citation file:
OBJECTIVE
Glucagon-like peptide (GLP)-1 receptor is encoded by GLP1R. The effect of genetic variation at this locus on the response to GLP-1 is unknown. This study assessed the effect of GLP1R polymorphisms on insulin secretion in response to hyperglycemia and to infused GLP-1 in nondiabetic subjects.
RESEARCH DESIGN AND METHODS
Eighty-eight healthy individuals (aged 26.3 ± 0.6 years, fasting glucose 4.83 ± 0.04 mmol/l) were studied using a hyperglycemic clamp. GLP-1 was infused for the last 2 h of the study (0.75 pmol/kg/min over 121–180 min, 1.5 pmol/kg/min over 181–240 min). β-Cell responsivity (ΦTotal) was measured using a C-peptide minimal model. The effect of 21 tag single nucleotide polymorphisms (SNPs) in GLP1R on ΦTotal was examined.
RESULTS
Two SNPs (rs6923761 and rs3765467) were nominally associated with altered β-cell responsivity in response to GLP-1 infusion.
CONCLUSIONS
Variation in GLP1R may alter insulin secretion in response to exogenous GLP-1. Future studies will determine whether such variation accounts for interindividual differences in response to GLP-1–based therapy.
Expression of a nonsynonymous single nucleotide polymorphism (SNP), which results in substitution of methionine for threonine at position 149 of GLP1R in cell systems, decreases binding affinity for glucagon-like peptide (GLP)-1 and intracellular signaling after hormone-receptor binding (1). These functional effects suggest that genetic variation in GLP1R may alter responsiveness to GLP-1 in vivo. To examine this hypothesis, we used a hyperglycemic clamp, together with GLP-1–amide (7,36) infusion, and measured insulin secretion using a modification of the C-peptide minimal model to determine β-cell responsivity (ΦTotal) to GLP-1 in vivo.
RESEARCH DESIGN AND METHODS
After an overnight fast, at 0700 (0 min) a primed (0.1 g/kg over 4 min), continuous infusion of 50% dextrose maintained peripheral glucose concentrations at ∼8.5 mmol/l. At 0900 (120 min), GLP-1–amide (7,36) (Bachem, San Diego, CA) was infused (1.5 pmol/kg over 10 min, subsequently 0.75 pmol/kg/min). At 1000 (180 min), the infusion rate was increased to 1.5 pmol/kg/min.
Measurement of insulin secretion: C-peptide minimal model
The model used to describe β-cell secretion is a modification of the C-peptide minimal model that assumes a nonlinear and derivative action of GLP-1 on both the static (Φs) and dynamic (Φd) components of total insulin secretion (ΦTotal) (2,3).
Selection and genotyping of tag SNPs for GLP1R
Twenty-one tag SNPs were genotyped (online appendix).
Statistical analysis
All data are presented as means ± SEM. Using the Kruskal-Wallis (general allelic model), we assessed univariate associations of genotype with ΦTotal in the presence of either glucose alone (mean values at 110–120 min), or glucose and 0.75 pmol/kg/min GLP-1 (170–180 min), or glucose and 1.5 pmol/kg/min GLP-1 (230–240 min), and with peak values of ΦTotal observed in the presence of GLP-1. If the P value for the overall univariate test of association was <0.1, then the associations for specific genotype pairs (e.g., 1,1 vs. 1,2 or 2,2 vs. 1,1) were also examined using a Mann-Whitney rank sum test. The SAS package was used for analyses, and a P value <0.05 was considered to be statistically significant.
RESULTS
Effect of rs6923761 and rs3765467 genotype on β-cell responsivity
Fig. 1A shows univariate association of rs6923761 genotype with ΦTotal assuming a general genetic model. At 120 min, in the presence of glucose alone, no significant associations with ΦTotal were detected (34 ± 3 vs. 35 ± 4 vs. 29 ± 2 min−1, P = 0.84) in the 1,1 (n = 39) versus the 1,2 (n = 34) and 2,2 (n = 14) groups, respectively. At 180 min (low-dose GLP-1), the associations with ΦTotal also were not statistically significant (104 ± 9 vs. 94 ± 11 vs. 81 ± 8 min−1, P = 0.11). The associations with ΦTotal at 240 min (high-dose GLP-1) were not significant (152 ± 12 vs. 133 ± 15 vs. 112 ± 10 min−1, P = 0.10). There was no association with peak values of ΦTotal (160 ± 12 vs. 143 ± 17 vs. 119 ± 10 min−1, P = 0.09).
Figure 1
Effect of rs6923761, analyzed with the general model (A), and with the recessive model (B), and of rs3765467 (C) on ΦTotal in the presence and absence of GLP-1. *P < 0.05.
Figure 1
Effect of rs6923761, analyzed with the general model (A), and with the recessive model (B), and of rs3765467 (C) on ΦTotal in the presence and absence of GLP-1. *P < 0.05.
When the effect of rs6923761 genotype on ΦTotal was examined (Fig. 1B) using a recessive model (i.e., 1,1 vs. individuals with one or more copies of the minor allele), the associations at 240 min (152 ± 12 vs. 127 ± 11 min−1, P = 0.03) and at peak ΦTotal (160 ± 12 vs. 136 ± 12 min−1, P = 0.03) were nominally significant. Differences in ΦTotal at 180 min (104 ± 9 vs. 90 ± 8) were not significant (P = 0.09).
The three heterozygotes for the minor allele of rs3765467 (Fig. 1C) exhibited differences in ΦTotal at 120 min prior to GLP-1 infusion (32 ± 2 vs. 73 ± 14 min−1, P = 0.006), as well as in response to GLP-1 at 180 min (92 ± 6 vs. 219 ± 35 min−1, P = 0.005) and at 240 min (132 ± 7 vs. 325 ± 44 min−1, P = 0.004). Nominally significant associations at peak values of ΦTotal were also observed (140 ± 8 vs. 332 ± 40 min−1, P = 0.005). An ANCOVA adjusting for sex, BMI, and fasting glucose strengthened the association of rs3765467 with peak and 240 min ΦTotal (P = 0.0021, P = 0.0026, respectively). None of the reported P values were corrected for multiple testing; applying a Benjamini-Hochberg approach to correct for 21 SNPs and 3 measurements, a P value of <0.0024 would be significant (4).
CONCLUSIONS
In this pilot study, we show that in the presence of hyperglycemia, two nonsynonymous SNPs in GLP1R are nominally associated with altered insulin secretory response to infused GLP-1. One of these nonsynonymous SNPs, rs6923761 (which has a minor allele frequency of ∼29% in Caucasians), results in the substitution of serine for glycine at position 168 and may decrease responsiveness to infused GLP-1. Homozygotes for the major allele of rs6923761 exhibited a ∼15% increase in mean ΦTotal compared with heterozygotes or homozygotes for the minor allele.
The other nonsynonymous SNP, rs3765467, results in substitution of glutamine for arginine at position 131. Heterozygotes for the minor allele of rs3765467 exhibited >100% increase in ΦTotal compared with homozygotes for the major allele. However, the observed increase in ΦTotal in response to hyperglycemia alone suggests that these observations may not be solely due to altered responsiveness to endogenous GLP-1.
The actions of GLP-1 (primarily stimulation of insulin secretion and suppression of glucagon secretion) are mediated by binding to its cognate receptor. Exenatide, a GLP-1 receptor agonist, binds to the GLP-1 receptor with greater affinity than its natural ligand due to a nine amino-acid COOH-terminal sequence that is absent in native GLP-1 (5). Substitution of glycine for alanine at position eight of native GLP-1 decreases affinity for the receptor (6), suggesting that both N- and COOH-terminal ends of GLP-1 bind the receptor.
A consequence of the constant glucose concentrations during the experiment was that Φd was a small component of ΦTotal; prior studies have suggested that incretins alter both static and dynamic components of β-cell responses (7,8). GLP-1 also inhibits gastrointestinal motility and may alter glucose delivery to the small intestine (9). By design, our experiment could not test for any potential effects of variation in GLP1R on these parameters. At present, variation in GLP1R has not been associated with type 2 diabetes (10); together with the data in our study, this suggests that genetic differences in GLP-1 responsiveness attributable to variation in GLP1R likely occurs at supraphysiologic GLP-1 concentrations. Given the exploratory nature of this experiment, the results should be interpreted cautiously prior to replication in other cohorts with an increased frequency of the minor allele of rs3765467.
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
See accompanying editorial, p. 2123.
Acknowledgments
This study was supported by Mayo Clinic Center for Translational Science Activities Grant RR24150 and Minnesota Obesity Center Grant DK50456. A.S. was supported in part by a grant from the Endocrine Fellows Foundation. M.C. is supported by Grant DK 67071; R.A.R. is supported by Grant DK29953; and A.V. is supported by Grant DK78646.
Genotyping and assay costs were defrayed by an investigator-initiated grant funded by Merck to A.V. A.V. also has received research grants from Merck and has consulted for sanofi-aventis and Daiichi Sankyo. R.A.R. is a member of the advisory boards of Merck, Novo Nordisk, Takeda, Mankind, and Eli Lilly and is a consultant for Abbott and Eli Lilly. No other potential conflicts of interest relevant to this article were reported.
A.S., C.D.M., F.M., A.R.Z., P.D.G., J.M.L., and A.V. researched the data. A.S., C.D.M., F.M., A.R.Z., M.C., G.T., R.A.R., C.C., and A.V. contributed to the discussion. A.V. wrote the manuscript. A.S., A.R.Z., M.C., R.A.R., and A.V. reviewed and edited the manuscript.
References
Beinborn
M
,
Worrall
CI
,
McBride
EW
,
Kopin
AS
:
A human glucagon-like peptide-1 receptor polymorphism results in reduced agonist responsiveness
.
Regul Pept
2005
;
130
:
1
–
6
Dalla Man
C
,
Micheletto
F
,
Sathananthan
A
,
Rizza
RA
,
Vella
A
,
Cobelli
C
:
A model of GLP-1 action on insulin secretion in nondiabetic subjects
.
Am J Physiol Endocrinol Metab
2010
;
298
:
E1115
–
1121
Breda
E
,
Cavaghan
MK
,
Toffolo
G
,
Polonsky
KS
,
Cobelli
C
:
Oral glucose tolerance test minimal model indexes of beta-cell function and insulin sensitivity
.
Diabetes
2001
;
50
:
150
–
158
Hochberg
Y
,
Benjamini
Y
:
More powerful procedures for multiple significance testing
.
Stat Med
1990
;
9
:
811
–
818
Doyle
ME
,
Theodorakis
MJ
,
Holloway
HW
,
Bernier
M
,
Greig
NH
,
Egan
JM
:
The importance of the nine-amino acid C-terminal sequence of exendin-4 for binding to the GLP-1 receptor and for biological activity
.
Regul Pept
2003
;
114
:
153
–
158
Doyle
ME
,
Greig
NH
,
Holloway
HW
,
Betkey
JA
,
Bernier
M
,
Egan
JM
:
Insertion of an N-terminal 6-aminohexanoic acid after the 7 amino acid position of glucagon-like peptide-1 produces a long-acting hypoglycemic agent
.
Endocrinology
2001
;
142
:
4462
–
4468
Campioni
M
,
Toffolo
G
,
Shuster
LT
,
Service
FJ
,
Rizza
RA
,
Cobelli
C
:
Incretin effect potentiates beta-cell responsivity to glucose as well as to its rate of change: OGTT and matched intravenous study
.
Am J Physiol Endocrinol Metab
2007
;
292
:
E54
–
E60
Dalla Man
C
,
Bock
G
,
Giesler
PD
,
Serra
DB
,
Ligueros Saylan
M
,
Foley
JE
,
Camilleri
M
,
Toffolo
G
,
Cobelli
C
,
Rizza
RA
,
Vella
A
:
Dipeptidyl peptidase-4 inhibition by vildagliptin and the effect on insulin secretion and action in response to meal ingestion in type 2 diabetes
.
Diabetes Care
2009
;
32
:
14
–
18
Vella
A
,
Rizza
RA
:
Extrapancreatic effects of GIP and GLP-1
.
Horm Metab Res
2004
;
36
:
830
–
836
Stolerman
ES
,
Florez
JC
:
Genomics of type 2 diabetes mellitus: implications for the clinician
.
Nat Rev Endocrinol
2009
;
5
:
429
–
436
© 2010 by the American Diabetes Association.
2010
Supplementary data
2,584 Views
118 Web of Science
