Antioxidant and reduced skin-ageing effects of a polyphenolenriched dietary supplement in response to air pollution: a randomized, double-blind, placebo-controlled study (original) (raw)
- Vincenzo Nobile Complife Italia Srl
- Irene Schiano Complife Italia Srl
- Ana Peral Monteloeder SL
- Silvana Giardina Complife Italia Srl
- Eleonora Spartà Complife Italia Srl
- Nuria Caturla Monteloeder SL https://orcid.org/0000-0003-3464-0594
Keywords: air pollution; skin; nutraceutical; plant polyphenols; antioxidant; anti-ageing; clinical trial.
Abstract
Background: Air pollution exposure is one of the major threats to skin health and accelerates skin ageing mainly through oxidative stress mechanisms. Since it is difficult to minimize skin exposure to air pollutants, especially in urban areas, strategies to protect the skin are needed. Plant phenolic compounds have been found to be effective in attenuating cellular oxidative stress and inflammation induced by different air pollutants and a dietary approach based on these compounds could provide an efficient protection measure.
Objective: Here we investigated the efficacy of a commercially available polyphenol-enriched dietary supplement (Zeropollution®) in reducing pollution-induced oxidative stress and in improving different skin parameters related to skin ageing of Caucasian and Asian subjects exposed to air pollution. Zeropollution is composed of four standardized herbal extracts: Olea europaea leaf, Lippia citriodora, Rosmarinus officinalis, and Sophora japonica.
Design: A double-blind randomized, parallel group study was carried out on 100 outdoor workers living in a polluted urban European area (Milan) to assess the efficacy of the dietary supplement. The total antioxidant capacity on saliva (FRAP), the oxidative damage on skin (lipoperoxides content), skin moisturization (corneometer), transepidermal water loss (tewameter), skin radiance and colour (spectrophotometer), skin elasticity (cutometer), skin sebum content (sebumeter), and the skin roughness (image analysis) were measured.
Results: Both inter-group and intra-group analysis proved that the dietary supplement improved all clinical and biochemical-monitored parameters, in both Caucasian and Asian individuals. Some of the positive effects such as decreased wrinkle depth, increased elasticity and firmness, improved skin moisturization and transepidermal water loss, and reduced dark spots pigmentation were statistically significant as early as 2 weeks of product consumption.
Conclusions: The results of the study indicate reduced oxidative stress-induced skin damage in both Asian and Caucasian women living in a polluted urban area. Therefore, the oral intake of this four-plant based supplement could be considered a complementary nutrition strategy to avoid the negative effects of environmental pollution exposure.
Downloads
Download data is not yet available.
References
WHO. Air pollution levels rising in many of the world’s poorest cities. World Health Organisation Global 603 Ambient Air Quality Database. 2016. Available from: https://www.who.int/airpollution/data/cities/en/ [cited 12 May 2016].
Huang N, Mi T, Xu S, Dadd T, Ye X, Chen G, et al. Traffic-derived air pollution compromises skin barrier function and stratum corneum redox status: a population study. J Cosmet Dermatol 2020; 19(7): 1751–9. doi: 10.1111/jocd.13194
Jin S-P, Li Z, Choi EK, Lee S, Kim YK, Seo EY, et al. Urban particulate matter in air pollution penetrates into the barrier-disrupted skin and produces ROS-dependent cutaneous inflammatory response in vivo. J Dermatol Sci 2018; 91(2): 175–83. doi: 10.1016/j.jdermsci.2018.04.015
Dijkhoff IM, Drasler B, Karakocak BB, Petri-Fink A, Valacchi G, Eeman M, et al. Impact of airborne particulate matter on skin: a systematic review from epidemiology to in vitro studies. Part Fibre Toxicol 2020; 17(1): 35. doi: 10.1186/s12989-020-00366-y
Krutmann J, Bouloc A, Sore G, Bernard BA, Passeron T. The skin aging exposome. J Dermatol Sci 2017; 85(3): 152–61. doi: 10.1016/j.jdermsci.2016.09.015
Hüls A, Sugiri D, Fuks K, Krutmann J, Schikowski T. Lentigine formation in caucasian women-interaction between particulate matter and solar UVR. J Invest Dermatol 2019; 139(4): 974–6. doi: 10.1016/j.jid.2018.09.034
Mancebo SE, Wang SQ. Recognizing the impact of ambient air pollution on skin health. J Eur Acad Dermatol Venereol 2015; 29(12): 2326–32. doi: 10.1111/jdv.13250
Krämer U, Sugiri D, Ranft U, Krutmann J, von Berg A, Berdel D, et al. Eczema, respiratory allergies, and traffic-related air pollution in birth cohorts from small-town areas. J Dermatol Sci 2009; 56(2): 99–105. doi: 10.1016/j.jdermsci.2009.07.014
Larrieu S, Lefranc A, Gault G, Chatignoux E, Couvy F, Jouves B, et al. Are the short-term effects of air pollution restricted to cardiorespiratory diseases? Am J Epidemiol 2009; 169(10): 1201–8. doi: 10.1093/aje/kwp032
Lu X, Zhang X, Li LY, Chen H. Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environ Res 2014; 128: 27–34. doi: 10.1016/j.envres.2013.11.007
Vierkötter A, Schikowski T, Ranft U, Sugiri D, Matsui M, Krämer U, et al. Airborne particle exposure and extrinsic skin aging. J Invest Dermatol 2010; 130(12): 2719–26. doi: 10.1038/jid.2010.204
Kim J, Kim E-H, Oh I, Jung K, Han Y, Cheong H-K, et al. Symptoms of atopic dermatitis are influenced by outdoor air pollution. J Allergy Clin Immunol 2013; 132(2): 495–498.e1. doi: 10.1016/j.jaci.2013.04.019
Xu F, Yan S, Wu M, Li F, Xu X, Song W, et al. Ambient ozone pollution as a risk factor for skin disorders. Br J Dermatol 2011; 165(1): 224–5. doi: 10.1111/j.1365-2133.2011.10349.x
Juliano C, Magrini GA. Cosmetic functional ingredients from botanical sources for anti-pollution skincare products. Cosmetics 2018; 5(1): 19. doi: 10.3390/cosmetics5010019
Marrot L. Pollution and sun exposure: a deleterious synergy. Mechanisms and opportunities for skin protection. Curr Med Chem 2018; 25(40): 5469–86. doi: 10.2174/0929867324666170918123907
Parrado C, Mercado-Saenz S, Perez-Davo A, Gilaberte Y, Gonzalez S, Juarranz A. Environmental stressors on skin aging. Mechanistic insights. Front Pharmacol 2019; 10: 759. doi: 10.3389/fphar.2019.00759
Araviiskaia E, Berardesca E, Bieber T, Gontijo G, Sanchez Viera M, Marrot L, et al. The impact of airborne pollution on skin. J Eur Acad Dermatol Venereol 2019; 33(8): 1496–505. doi: 10.1111/jdv.15583
Nobile V, Michelotti A, Cestone E, Caturla N, Castillo J, Benavente-García O, et al. Skin photoprotective and antiageing effects of a combination of rosemary (Rosmarinus officinalis) and grapefruit (Citrus paradisi) polyphenols. Food Nutr Res 2016; 60: 31871. doi: 10.3402/fnr.v60.31871
Pérez-Sánchez A, Barrajón-Catalán E, Herranz-López M, Micol V. Nutraceuticals for skin care: a comprehensive review of human clinical studies. Nutrients 2018; 10(4): 403. doi: 10.3390/nu10040403
Parrado C, Philips N, Gilaberte Y, Juarranz A, González S. Oral photoprotection: effective agents and potential candidates. Front Med 2018; 5: 188. doi: 10.3389/fmed.2018.00188
Romieu I, Castro-Giner F, Kunzli N, Sunyer J. Air pollution, oxidative stress and dietary supplementation: a review. Eur Respir J 2008; 31(1): 179–97. doi: 10.1183/09031936.00128106
Whyand T, Hurst JR, Beckles M, Caplin ME. Pollution and respiratory disease: can diet or supplements help? A review. Respir Res 2018; 19(1): 79. doi: 10.1186/s12931-018-0785-0
Nguyen LTH, Nguyen UT, Kim Y-H, Shin H-M, Yang I-J. Astragali Radix and its compound formononetin ameliorate diesel particulate matter-induced skin barrier disruption by regulation of keratinocyte proliferation and apoptosis. J Ethnopharmacol 2019; 228: 132–41. doi: 10.1016/j.jep.2018.09.025
Milani M, Hashtroody B, Piacentini M, Celleno L. Skin protective effects of an antipollution, antioxidant serum containing Deschampsia antartica extract, ferulic acid and vitamin C: a controlled single-blind, prospective trial in women living in urbanized, high air pollution area. Clin Cosmet Investig Dermatol 2019; 12: 393–9. doi: 10.2147/CCID.S204905
Seok JK, Lee J-W, Kim YM, Boo YC. Punicalagin and (-)-Epigallocatechin-3-Gallate rescue cell viability and attenuate inflammatory responses of human epidermal keratinocytes exposed to airborne particulate matter PM10. Skin Pharmacol Physiol 2018; 31(3): 134–43. doi: 10.1159/000487400
Zhen AX, Hyun YJ, Piao MJ, Fernando PDSM, Kang KA, Ahn MJ, et al. Eckol inhibits particulate matter 2.5-induced skin keratinocyte damage via MAPK signaling pathway. Mar Drugs 2019; 17(8): 444. doi: 10.3390/md17080444
Choi MA, Seok JK, Boo YC. P-354 – resveratrol and resveratryl triacetate attenuate inflammatory responses and reactive oxygen species in human epidermal keratinocytes exposed to particulate matter PM10. Free Radic Biol Med 2018; 120: S152. doi: 10.1016/j.freeradbiomed.2018.04.501
Pambianchi E, Ferrara F, Pecorelli A, Woodby B, Grace M, Therrien J-P, et al. Blueberry extracts as a novel approach to prevent ozone-induced cutaneous inflammasome activation. Oxid Med Cell Longev 2020; 2020: 9571490. doi: 10.1155/2020/9571490
Bulotta S, Celano M, Lepore SM, Montalcini T, Pujia A, Russo D. Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: focus on protection against cardiovascular and metabolic diseases. J Transl Med 2014; 12: 219. doi: 10.1186/s12967-014-0219-9
Serreli G, Incani A, Atzeri A, Angioni A, Campus M, Cauli E, et al. Antioxidant effect of natural table olives phenolic extract against oxidative stress and membrane damage in enterocyte-like cells. J Food Sci 2017; 82(2): 380–5. doi: 10.1111/1750-3841.13613
He X, Bai Y, Zhao Z, Wang X, Fang J, Huang L, et al. Local and traditional uses, phytochemistry, and pharmacology of Sophora japonica L.: a review. J Ethnopharmacol 2016; 187: 160–82. doi: 10.1016/j.jep.2016.04.014
Li L, Huang T, Lan C, Ding H, Yan C, Dou Y. Protective effect of polysaccharide from Sophora japonica L. flower buds against UVB radiation in a human keratinocyte cell line (HaCaT cells). J Photochem Photobiol B, Biol 2019; 191: 135–42. doi: 10.1016/j.jphotobiol.2018.12.001
Avola R, Graziano ACE, Pannuzzo G, Bonina F, Cardile V. Hydroxytyrosol from olive fruits prevents blue-light-induced damage in human keratinocytes and fibroblasts. J Cell Physiol 2019; 234(6): 9065–76. doi: 10.1002/jcp.27584
Jeon S, Choi M. Anti-inflammatory and anti-aging effects of hydroxytyrosol on human dermal fibroblasts (HDFs). Biomed Dermatol 2018; 2(1): 21. doi: 10.1186/s41702-018-0031-x
Vertuani S, Beghelli E, Scalambra E, Malisardi G, Copetti S, Toso RD, et al. Activity and stability studies of verbascoside, a novel antioxidant, in dermo-cosmetic and pharmaceutical topical formulations. Molecules 2011; 16(8): 7068–80. doi: 10.3390/molecules16087068
Espinosa-González AM, García-Bores AM, Benítez-Flores JC, Sandoval-Pérez CE, González-Valle MR, Céspedes CL, et al. Photoprotective effect of verbascoside from Buddleja cordata in SKH-1 mice exposed to acute and chronic UV-B radiation. Bol Latinoam Caribe Plantas Med Aromát 2016; 15(5): 288–300.
Park M, Han J, Lee CS, Soo BH, Lim K-M, Ha H. Carnosic acid, a phenolic diterpene from rosemary, prevents UV-induced expression of matrix metalloproteinases in human skin fibroblasts and keratinocytes. Exp Dermatol 2013; 22(5): 336–41. doi: 10.1111/exd.12138
Habtemariam S. The therapeutic potential of rosemary (Rosmarinus officinalis) diterpenes for Alzheimer’s disease. Evid Based Complement Alternat Med 2016; 2016: 2680409. doi: 10.1155/2016/2680409
Son Y, Lee S-A, Kim S-S, Jang Y, Chun J-C, Lee J-C. Acteoside inhibits melanogenesis in B16F10 cells through ERK activation and tyrosinase down-regulation. J Pharm Pharmacol 2011; 63(10): 1309–19. doi: 10.1111/j.2042-7158.2011.01335.x
Caturla Cernuda N, Peral Clement A, Monteloeder SL. Composición De Extractos Vegetales Con Flavonoides Para Paliar Los Múltiples Efectos De La Contaminación Del Aire Sobre La Piel. WO/2019/211501, 2019-11-07.
Anenberg S. A global snapshot of the air pollution-related health impacts of transportation sector emissions in 2010 and 2015. Available from: https://theicct.org/publications/health-impacts-transport-emissions-2010-2015 [cited 26 February 2019].
Mistry N. Guidelines for formulating anti-pollution products. Cosmetics 2017; 4(4): 57. doi: 10.3390/cosmetics4040057
Rembiesa J, Ruzgas T, Engblom J, Holefors A. The impact of pollution on skin and proper efficacy testing for anti-pollution claims. Cosmetics 2018; 5(1): 4. doi: 10.3390/cosmetics5010004
Erdelmeier I, Gérard-Monnier D, Yadan JC, Chaudière J. Reactions of N-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Mechanistic aspects of the colorimetric assay of lipid peroxidation. Chem Res Toxicol 1998; 11(10): 1184–94. doi: 10.1021/tx970180z
Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Anal Biochem 1996; 239(1): 70–6. doi: 10.1006/abio.1996.0292
Baudouin C, Charveron M, Tarroux R, Gall Y. Environmental pollutants and skin cancer. Cell Biol Toxicol 2002; 18(5): 341–8. doi: 10.1023/a:1019540316060
Menzel DB. The toxicity of air pollution in experimental animals and humans: the role of oxidative stress. Toxicol Lett 1994; 72(1–3): 269–77. doi: 10.1016/0378-4274(94)90038-8
Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44–84. doi: 10.1016/j.biocel.2006.07.001
Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut 2008; 151(2): 362–7. doi: 10.1016/j.envpol.2007.06.012
Valacchi G, Sticozzi C, Pecorelli A, Cervellati F, Cervellati C, Maioli E. Cutaneous responses to environmental stressors. Ann N Y Acad Sci 2012; 1271: 75–81. doi: 10.1111/j.1749-6632.2012.06724.x
Thiele JJ, Traber MG, Polefka TG, Cross CE, Packer L. Ozone-exposure depletes vitamin E and induces lipid peroxidation in murine stratum corneum. J Invest Dermatol 1997; 108(5): 753–7. doi: 10.1111/1523-1747.ep12292144
Uchida K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 2003; 42(4): 318–43. doi: 10.1016/s0163-7827(03)00014-6
Dunaway S, Odin R, Zhou L, Ji L, Zhang Y, KadekaroAL. Natural antioxidants: multiple mechanisms to protect skin from solar radiation. Front Pharmacol 2018; 9: 392. doi: 10.3389/fphar.2018.00392
Ancora C, Roma C, Vettor M. Evaluation of cosmetic efficacy of oleoeuropein. Symposium on the New Frontiers of Dermocosmetology: efficacy, stability and safety, Rome, Italy, 4–6 November 2004.
Kimura Y, Sumiyoshi M. Olive leaf extract and its main component oleuropein prevent chronic ultraviolet B radiation-induced skin damage and carcinogenesis in hairless mice. J Nutr 2009; 139(11): 2079–86. doi: 10.3945/jn.109.104992
Ha JY, Choi HK, Oh MJ, Choi H-Y, Park CS, Shin H-S. Photo-protective and anti-melanogenic effect from phenolic compound of olive leaf (Olea europaea L. var. Kalamata) extracts on the immortalized human keratinocytes and B16F1 melanoma cells. Food Sci Biotechnol 2009; 18(5): 1193–8.
Guo W, An Y, Jiang L, Geng C, Zhong L. The protective effects of hydroxytyrosol against UVB-induced DNA damage in HaCaT cells. Phytother Res 2010; 24(3): 352–9. doi: 10.1002/ptr.2943
Bakirel T, Bakirel U, Keleş OU, Ulgen SG, Yardibi H. In vivo assessment of antidiabetic and antioxidant activities of rosemary (Rosmarinus officinalis) in alloxan-diabetic rabbits. J Ethnopharmacol 2008; 116(1): 64–73. doi: 10.1016/j.jep.2007.10.039
Birtić S, Dussort P, Pierre F-X, Bily AC, Roller M. Carnosic acid. Phytochemistry 2015; 115: 9–19. doi: 10.1016/j.phytochem.2014.12.026
Offord EA, Gautier J-C, Avanti O, Scaletta C, Runge F, Krämer K, et al. Photoprotective potential of lycopene, beta-carotene, vitamin E, vitamin C and carnosic acid in UVA-irradiated human skin fibroblasts. Free Radic Biol Med 2002; 32(12): 1293–303. doi: 10.1016/s0891-5849(02)00831-6
Hubaux R, Weisgerber F, Salmon M. In vitro assays to study the effects of air pollutants on skin: exposure to urban dust and cigarette smoke extract. In Proceedings of the 23rd IFSCC Conference, Zurich. 2015. Available from: http://tst.pg2.at/abstracts/a0120.html?zoom_highlight= [cited 22 September 2015].
Pérez-Sánchez A, Barrajón-Catalán E, Herranz-López M, Castillo J, Micol V. Lemon balm extract (Melissa officinalis, L.) promotes melanogenesis and prevents UVB-induced oxidative stress and DNA damage in a skin cell model. J Dermatol Sci. Netherlands; 2016; 84(2): 169–77. doi: 10.1016/j.jdermsci.2016.08.004
Sánchez-Marzo N, Lozano-Sánchez J, Cádiz-Gurrea ML, Herranz-López M, Micol V, Segura-Carretero A. Relationships between chemical structure and antioxidant activity of isolated phytocompounds from lemon verbena. Antioxidants 2019; 8(8): 324. doi: 10.3390/antiox8080324
Korkina LG, Mikhal’chik E, Suprun MV, Pastore S, Dal Toso R. Molecular mechanisms underlying wound healing and anti-inflammatory properties of naturally occurring biotechnologically produced phenylpropanoid glycosides. Cell Mol Biol 2007; 53(5): 84–91.
Young-Ok S, Seung-Ah L, Seung-Ah L, So-Soon K, Yong-Suk J, Jae-Chul C, et al. Acteoside inhibits melanogenesis in B16F10 cells through ERK activation and tyrosinase down-regulation. J Pharm Pharmacol 2011; 63(10): 1309–19. doi: 10.1111/j.2042-7158.2011.01335.x
Kim M, Son D, Shin S, Park D, Byun S, Jung E. Protective effects of Camellia japonica flower extract against urban air pollutants. BMC Complement Altern Med 2019; 19: 30. doi: 10.1186/s12906-018-2405-4
Peluso I, Raguzzini A. Salivary and urinary total antioxidant capacity as biomarkers of oxidative stress in humans. Patholog Res Int 2016; 2016: 5480267. doi: 10.1155/2016/5480267
Bocci V, Valacchi G, Corradeschi F, Fanetti G. Studies on the biological effects of ozone: 8. Effects on the total antioxidant status and on interleukin-8 production. Mediators Inflamm 1998; 7(5): 313–7. doi: 10.1080/09629359890820
Bucalen CF. Effects of xenobiotics on total antioxidant capacity. Interdiscip Toxicol 2012; 5(3): 117–22. doi: 10.2478/v10102-012-0019-0
Goraca A, Skibska B. Plasma antioxidant status in healthy smoking and non-smoking men. Bratisl Lek Listy 2005; 106(10): 301–6.
Baliga MS, Shivashankara AR, Rao S, Rai MP, Mane PP, Tonse R, et al. Saliva as an important body fluid in the detection of oxidative stress in community based studies: preliminary study with police personnel’s exposed to automobile exhaust. Int J Appl Res 2017; 3(6): 372–6.
Park S-Y, Byun EJ, Lee JD, Kim S, Kim HS. Air pollution, autophagy, and skin aging: impact of Particulate Matter (PM10) on human dermal fibroblasts. Int J Mol Sci 2018; 19(9): 2727. doi: 10.3390/ijms19092727
Pan T-L, Wang P-W, Aljuffali IA, Huang C-T, Lee C-W, Fang J-Y. The impact of urban particulate pollution on skin barrier function and the subsequent drug absorption. J Dermatol Sci 2015; 78(1): 51–60. doi: 10.1016/j.jdermsci.2015.01.011
Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, et al. Mechanisms of photoaging and chronological skin aging. Arch Dermatol 2002; 138(11): 1462–70. doi: 10.1001/archderm.138.11.1462
Furue M, Takahara M, Nakahara T, Uchi H. Role of AhR/ARNT system in skin homeostasis. Arch Dermatol Res 2014; 306(9): 769–79. doi: 10.1007/s00403-014-1481-7
Kung T, Murphy KA, White LA. The aryl hydrocarbon receptor (AhR) pathway as a regulatory pathway for cell adhesion and matrix metabolism. Biochem Pharmacol 2009; 77(4): 536–46. doi: 10.1016/j.bcp.2008.09.031
Luecke S, Backlund M, Jux B, Esser C, Krutmann J, Rannug A. The aryl hydrocarbon receptor (AHR), a novel regulator of human melanogenesis. Pigment Cell Melanoma Res 2010; 23(6): 828–33. doi: 10.1111/j.1755-148X.2010.00762.x
Izawa H, Watanabe G, Taya K, Sagai M. Inhibitory effects of foods and polyphenols on activation of aryl hydrocarbon receptor induced by diesel exhaust particles. Environ Sci 2007; 14(3): 149–56.
Potapovich AI, Lulli D, Fidanza P, Kostyuk VA, De Luca C, Pastore S, et al. Plant polyphenols differentially modulate inflammatory responses of human keratinocytes by interfering with activation of transcription factors NFκB and AhR and EGFR-ERK pathway. Toxicol Appl Pharmacol 2011; 255(2): 138–49. doi: 10.1016/j.taap.2011.06.007
Sekaran S, Kandaswamy S, Gunasekaran K, Perumal E, Basha FYA, Mohan BJM, et al. Protective role of quercetin on polychlorinated biphenyls (Aroclor-1254) induced oxidative stress and apoptosis in liver of adult male rats. J Biochem Mol Toxicol 2012; 26(12): 522–32. doi: 10.1002/jbt.21466
Mohebati A, Guttenplan JB, Kochhar A, Zhao Z-L, Kosinska W, Subbaramaiah K, et al. Carnosol, a constituent of zyflamend, inhibits aryl hydrocarbon receptor-mediated activation of CYP1A1 and CYP1B1 transcription and mutagenesis. Cancer Prevent Res 2012; 5(4): 593–602. doi: 10.1158/1940-6207.CAPR-12-0002
Amakura Y, Tsutsumi T, Sasaki K, Yoshida T, Maitani T. Screening of the inhibitory effect of vegetable constituents on the aryl hydrocarbon receptor-mediated activity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biol Pharm Bull 2003; 26(12): 1754–60. doi: 10.1248/bpb.26.1754
How to Cite
Nobile V., Schiano I., Peral A., Giardina S., Spartà E., & Caturla N. (2021). Antioxidant and reduced skin-ageing effects of a polyphenolenriched dietary supplement in response to air pollution: a randomized, double-blind, placebo-controlled study. Food & Nutrition Research, 65. https://doi.org/10.29219/fnr.v65.5619
Section
Original Articles