Filamentous bacteriophages and their role in the virulence and evolution of pathogenic bacteria (original) (raw)

References

  1. Russel, M. and Model, P., Filamentous Phages Calendar, R.C., Ed., 2nd ed., New York: Oxford Univ. Press, 2006, pp. 146–160.
  2. Chopin, M.C., Renault, A., Ehrlich, S.D., and Gautier, M., Filamentous phage active on gram-positive bacterium Propionibacterium freudenreichii, J. Bacteriol., 2002, vol. 184, pp. 2030–2033.
    Article PubMed Central CAS PubMed Google Scholar
  3. Kim, A.Y. and Blaschek, H.P., Isolation and characterization of a filamentous virus-like particles from Clostridium acetobutilicum NCIB 6444, J. Bacteriol., 1991, vol. 173, pp. 53–55.
    Google Scholar
  4. Brussow, H., Canchaya, C., and Hardt, W.D., Phages and evolution of bacterial pathogens from genomic rearrangements to lysogenic conversion, Microbiol. Mol. Biol. Rev., 2004, vol. 68, pp. 560–602.
    Article PubMed Central PubMed Google Scholar
  5. Krupovic, M., Prangishvili, D., Hendrix, R.W., and Bamford, D.H., Genomic of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere, Microbiol. Mol. Biol. Rev., 2011, vol. 75, no. 4, pp. 610–635.
    Article PubMed Central PubMed Google Scholar
  6. Ilyna, T.S., Mechanisms of horizontal gene transfer: the role of bacteriophages and integrons in the evolution of pathogenic bacteria, Mol. Genet. Mikrobiol. Virusol., 2003, vol. 4, pp. 3–10.
    Google Scholar
  7. Horiuchi, K., Volvis, G.E., and Model, F., The filamentous phage genome genes: physical structure and protein products, in Cold Spring Harbor Monograph Archive, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 2006, pp. 113–117.
    Google Scholar
  8. Rakonjac, J., Bennett, N.J., Spagnuolo, J., Gagic, D., and Russel, M., Filamentous bacteriophage: biology, phage display and nanotechnology applications, Curr. Issues Mol. Biol., 2011, vol. 13, pp. 51–76.
    CAS PubMed Google Scholar
  9. Waldor, M.K. and Friedman, D.I., Phage regulatory circuits and virulence gene expression, Curr. Opin. Microbiol., 2005, vol. 8, pp. 459–465.
    Article CAS PubMed Google Scholar
  10. Huber, K.E. and Waldor, M.K., Filamentous phage integration requires the host recombinases XerC and XerD, Nature, 2002, vol. 417, pp. 656–659.
    Article CAS PubMed Google Scholar
  11. McLeod, S.M., Kimsey, H.H., Davis, B., and Waldor, M.K., CTX? and Vibrio cholerae: exploring a newly recognized type of phage-host cell relationship, Mol. Microbiol., 2005, vol. 57, pp. 347–356.
    Article CAS PubMed Google Scholar
  12. Waldor, M.K. and Mekalanos, J.J., Lysogenic conversion by a filamentous phage encoding cholerae toxin, Science, 1996, vol. 272, pp. 1910–1914.
    Article CAS PubMed Google Scholar
  13. Lencer, W.L. and Tsai, B., The intracellular voyage of cholera toxin: going retro, Trends Biochem. Sci., 2003, vol. 28, pp. 639–645.
    Article CAS PubMed Google Scholar
  14. Boyd, F., Filamentous phages of Vibrio cholerae, in Genomic and Molecular Biology, Farique, S.M. and Nais, G.B., Eds., Horison Sci. Press, UK, 2008, pp. 49–66.
    Google Scholar
  15. Farique, Sh.M. and Mekalanos, J.J. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae, Virulence, 2012, vol. 3, no. 7, pp. 1–10.
    Google Scholar
  16. Mcleod, S.M. and Waldor, M.K., Characterization of XerC- and XerD-dependent CTX phage integration in Vibrio cholerae, Mol. Microbiol., 2004, vol. 54, no. 4, pp. 935–947.
    Article CAS PubMed Google Scholar
  17. Val, M.E., Bouvier, M., Campos, J., Sherratt, D., Cornet, F., Mazel, D., and Barra, F.X., The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae, Mol. Cell, 2005, vol. 19, pp. 559–566.
    Article CAS PubMed Google Scholar
  18. Davis, B.M. and Waldor, M.E., CTXϕ contains a hybrid genome derived from tandemly integrated elements, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, pp. 8572–8577.
    Article PubMed Central CAS PubMed Google Scholar
  19. Waldor, M.K., Rubin, E.J., Pearson, G.D., Kimsey, H., and Mekalanos, J.J., Regulation, replication and integration functions of the Vibrio cholerae CTXϕ are encoded by region RS2, Mol. Microbiol., 1997, vol. 24, pp. 917–926.
    Article CAS PubMed Google Scholar
  20. Farique, Sh.M., Asadulghani, Kamruzzaman, M., Nandi, R.K., Ghosh, A.N., Mekalanos, J.J., and Sack, D.A., RSI element of Vibrio cholerae can propagate horizontally as a filamentous phage exploiting the morphogenesis genes of CTX, Infect. Immun., 2002, vol. 70, no. 1, pp. 163–170.
    Article Google Scholar
  21. Davis, B.M., Kimsey, H.H., Kane, A.V., and Waldor, M.K., A satellite phage-encoded antirepressor induces repressor aggregation and cholera toxin gene transfer, EMBO J., 2012, vol. 21, pp. 4240–4249.
    Article Google Scholar
  22. Moyer, K.E., Kimsey, H.H., and Waldor, M.K., Evidence for a rolling-circle mechanism of phage DNA synthesis from both replicative and integrated forms of CTXϕ, Mol. Microbiol., 2001, vol. 41, pp. 311–323.
    Article CAS PubMed Google Scholar
  23. Davis, B.M., Lawson, E.H., Sandkvist, M., Sozhamannan, S., and Waldor, M.K., Convergence of the secretory pathways for cholera toxin and the filamentous phage CTXϕ, Science, 2000, vol. 288, pp. 333–335.
    Article CAS PubMed Google Scholar
  24. Honma, Y., Ikema, M., Toma, C., Ehara, M., and Iwanaga, M., Molecular analysis of a filamentous phage (fsl) of Vibrio cholerae O139, Biochim. Biophys. Acta, 1997, vol. 1362, no. 2, pp. 109–115.
    Article CAS PubMed Google Scholar
  25. Ikema, M. and Honma, Y., A novel filamentous phage, fs2, of Vibrio cholerae O139, Microbiology, 1998, vol. 144, pp. 1901–1906.
    Article CAS PubMed Google Scholar
  26. Rubin, E.J., Lin, W., Mekalanos, J.J., and Waldor, M.K., Replication and integration of Vibrio cholerae criptic plasmid linked to the CTX prophage, Mol. Microbiol., 1998, vol. 28, pp. 1247–1254.
    Article CAS PubMed Google Scholar
  27. Hassen, F., Komruzzaman, M., Mekalanos, J.J., and Farique, S.M., Satellite phage TLCϕ enable toxigenic conversion by CTX phage through dif site alteration, Nature, 2010, vol. 467, no. 7318, pp. 982–985.
    Article Google Scholar
  28. Campos, J., Martinez, E., Suzarte, E., Rodriguez, B.L., Marrero, K., Silva, Y., et al., VGJϕ, a novel filamentous phage of Vibrio cholerae, integrates into the same chromosomal site as CTXϕ, J. Bacteriol., 2003, vol. 185, no. 19, pp. 5685–5696.
    Article PubMed Central CAS PubMed Google Scholar
  29. Campos, J., Martinez, E., Marrero, K., Silva, Y., Rodriguez, B.L., Suzarte, E., et al., Novel type of specialized transduction for CTXϕ or its satellite phage RS1 mediated by filamentous phage VGJϕ in Vibrio cholerae, J. Bacteriol., 2003, vol. 185, pp. 7231–7240.
    Article PubMed Central CAS PubMed Google Scholar
  30. Fariquie, S.M., Naser, T.B., Fujihara, K., Dirphat, P., Chowdhyru, N., Kamruzzaman, M., et al., Genomic sequence and receptor for the Vibrio cholerae phage KSF-1ϕ: evolutionary divergence among filamentous Vibrio phages mediating lateral gene transfer, J. Bacteriol., 2005, vol. 187, pp. 4096–4103.
    Google Scholar
  31. Campos, J., Martinez, E., Izquierdo, Y., and Fando, R., VEJϕ, a novel filamentous phage of Vibrio cholerae able to transducer the cholera toxin genes, Microbiology, 2010, vol. 156, pp. 108–115.
    Article CAS PubMed Google Scholar
  32. Kar, S., Ghosh, R.K., Ghosh, A.N., and Ghosh, A., Integration of the DNA of a novel filamentous bacteriophage VSK from Vibrio cholerae O139 into the chromosomal DNA, FEMS Microbiol. Letts., 1996, vol. 145, pp. 17–22.
    Article CAS Google Scholar
  33. Jouravleva, E.A., McDonald, G.A., Garon, C.F., Bresman-Finkelstein, M., and Finkelstein, R.A., Characterization and possible functions of a new filamentous bacteriophage from Vibrio cholerae O139, Microbiology, 1998, vol. 144, pp. 315–324.
    Article CAS PubMed Google Scholar
  34. Derbise, A., Chenal-Francisque, V., Pouilllot, F., Favolie, C., Prevost, M.C., Mealique, C., et al., A bacillus, Mol. Microbiol., 2002, vol. 63, no. 4, pp. 1145–1157.
    Article Google Scholar
  35. Chouikha, I., Charrier, L., Filali, S., Debrise, A., and Carniel, E., Hhorizontally acquired filamentous phage contributes to the pathogenicity of the plague insight into the infective properties of YPFϕ, the Yersinia pestis filamentous phage, Virololgy, 2010, vol. 407, no. 1, pp. 43–52.
    Article CAS Google Scholar
  36. Gonzalez, M.D., Lichtensteiger, C.A., Caughlan, R., and Vimr, E.C., Conserved filamentous prophage in Escherichia coli O18: K1: H7 and Yersinia pestis biovar orientalis, J. Bacteriol., 2002, vol. 184, pp. 6050–6055.
    Article PubMed Central CAS PubMed Google Scholar
  37. Brockhurst, M.A., Bucklin, A., and Rainey, P.B., The effect of a bacteriophage on diversification of the opportunistic bacterial pathogen, Pseudomonas aeruginosa, Proc. R. Soc., 2005, vol. 272, pp. 1385–1391.
    Article Google Scholar
  38. Webb, J.S., Lan, M., and Kjelleberg, S., Bacteriophage and phenotypic variation Pseudomonas aeruginosa biofilm development, J. Bacteriol., 2004, vol. 86, pp. 8066–8073.
    Article Google Scholar
  39. Rise, S.A., Hao tan Ch., Mikkelsen, P.J., Kung, V., Tay, M., Hauser, A., et al., The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage, ISME J., 2009, vol. 3, pp. 271–282.
    Article Google Scholar
  40. Kawai, M., Uchiyama, I., and Kabayshi, L., Genome comparison in silico in Neisseria suggest integration of filamentous bacteriophage by their own transposase, DNA Res., 2005, vol. 12, pp. 389–401.
    Article CAS PubMed Google Scholar
  41. Bille, E., Zahar, J.-R., Perrin, A., Merelle, S., Kriz, P., Jolley, K.A., et al., A chromosomally integrated bacteriophage in invasive meningococci, J. Exp. Med., 2005, vol. 201, no. 12, pp. 1905–1913.
    Article PubMed Central CAS PubMed Google Scholar
  42. Yamada, T., Filamentous phages of Ralstonia solanocerum: double-edged swords for pathogenic bacteria, Microbiology, 2013, vol. 159, pp. 1–7.
    Article Google Scholar
  43. Addy, H.S., Askora, A., Kawasaki, T., Fujie, M., and Yamada, T., The filamentous phage ϕRSSI enhances virulence of phytopathogenic Ralstonia solanocerum on tomato, Phytopathology, 2012, vol. 102, no. 3, pp. 244–251.
    Article PubMed Google Scholar
  44. Addy, H.S., Askora, A., Kawasaki, T., Fujie, M., and Yamada, T., Loss of virulence of the phytophatogen Ralstonia solanocerum through infection by ϕRSM1 filamentous phages, Phytopathology, 2012, vol. 102, no. 5, pp. 469–477.
    Article CAS PubMed Google Scholar
  45. Kamiunten, H. and Wakimoto, S., Effect of the infection with filamentous phage Xf-2 on the properties of Xanthomonas campestris var. oryzae, Ann. Phytopathol. Soc. Jpn., 1982, vol. 47, pp. 627–636.
    Article Google Scholar
  46. Tseng, Y.H., Lo, M.C., Lin, K.C., Pen, C.C., and Chang, K.Y., Characterization of filamentous bacteriophages ϕLf from Xanthomonas campestris pv. campestris, J. Gen. Virol., 1990, vol. 71, pp. 1881–1884.
    Article CAS PubMed Google Scholar

Download references