Detection of chromosomal imbalances in central neurocytomas by using comparative genomic hybridization (original) (raw)

,

,

, and

M.D., F.R.C.Path., F.R.C.P.A.

View More View Less

Restricted access

Purchase Now

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

Print or Print + Online Sign in

Object. Central neurocytomas are rare neuronal tumors commonly found in the intraventricular regions. Little is known about the tumorigenesis of these neoplasms. The aim of this study was to provide an overview of genetic imbalances in central neurocytomas.

Methods. In this study, comparative genomic hybridization was used to identify DNA sequence copy number changes (losses and gains) in a series of 10 central neurocytomas. Tumor DNA and normal reference DNA were differentially labeled and allowed to cohybridize to normal metaphase chromosomes. After hybridization and fluorescent staining of the bound DNA, regions of gain or of loss of DNA sequences were detected as changes in the tumor/normal fluorescence intensity ratio along the target metaphase chromosomes. A gain of DNA sequence was detected in chromosomes 2p, 10q, and 18q. A protooncogene, Bcl2, which maps to 18q21, was evaluated by immunohistochemical analysis to determine its role in the formation of central neurocytomas.

Conclusions. In this study the authors identified recurrent genetic changes on chromosomes 2p, 10q, and 18q in central neurocytomas and highlighted chromosomal regions for additional mapping and cloning of candidate genes that are important in the development of central neurocytomas.