Cerromojonite, CuPbBiSe3, from El Dragόn (Bolivia): A New Member of the Bournonite Group (original) (raw)
Author / Affiliation / Email
Article Menu
/ajax/scifeed/subscribe
Font Type:
Arial Georgia Verdana
Open AccessArticle
by
Hans-Jürgen Förster
1,*,
Luca Bindi
Günter Grundmann
3 and
Chris J. Stanley
4
1
Helmholtz Centre Potsdam German Research Centre for Geosciences GFZ, DE-14473 Potsdam, Germany
2
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy
3
Chair of Engineering Geology, Technical University Munich, Arcisstr. 23, DE-80333 Munich, Germany
4
Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
*
Author to whom correspondence should be addressed.
Submission received: 25 July 2018 /Accepted: 30 August 2018 /Published: 21 September 2018
Abstract
:
Cerromojonite, ideally CuPbBiSe3, represents a new selenide from the El Dragόn mine, Department of Potosí, Bolivia. It either occurs as minute grains (up to 30 µm in size) in interstices of hansblockite/quijarroite intergrowths, forming an angular network-like intersertal texture, or as elongated, thin-tabular crystals (up to 200 μm long and 40 μm wide) within lath-shaped or acicular mineral aggregates (interpreted as pseudomorphs) up to 2 mm in length and 200 μm in width. It is non-fluorescent, black, and opaque, with a metallic luster and black streak. It is brittle, with an irregular fracture, and no obvious cleavage and parting. In plane-polarized incident light, cerromojonite is grey to cream-white, and weakly pleochroic, showing no internal reflections. Between crossed polarizers, cerromojonite is weakly anisotropic, with rotation tints in shades of brown and grey. Lamellar twinning on {110} is common. The reflectance values in air for the COM standard wavelengths (R1 and R2) are: 48.8 and 50.3 (470 nm), 48.2 and 51.8 (546 nm), 47.8 and 52.0 (589 nm), and 47.2 and 52.0 (650 nm). Electron-microprobe analyses yielded a mean composition of: Cu 7.91, Ag 2.35, Hg 7.42, Pb 16.39, Fe 0.04, Ni 0.02, Bi 32.61, Se 33.37, total 100.14 wt %. The empirical formula (based on 6 atoms pfu) is (Cu0.89Hg0.11)Σ = 1.00(Pb0.56Ag0.16Hg0.15 Bi0.11Fe0.01)Σ = 0.99Bi1.00Se3.01. The ideal formula is CuPbBiSe3. Cerromojonite is orthorhombic (space group Pn21m), with a = 8.202(1) Å, b = 8.741(1) Å, c = 8.029(1) Å, V = 575.7(1) Å3, Z = 4. Calculated density is 7.035 g·cm−3. The five strongest measured X-ray powder diffraction lines (d in Å (I/I0) (hkl)) are: 3.86 (25) (120), 2.783 (100) (122), 2.727 (55) (212), 2.608 (40) (310), and 1.999 (25) (004). Cerromojonite is a new member of the bournonite group, representing the Se-analogue of součekite, CuPbBi(S,Se)3. It is deposited from strongly oxidizing low-T hydrothermal fluids at a fSe2/fS2 ratio >1, both as primary and secondary phase. The new species has been approved by the IMA-CNMNC (2018-040) and is named for Cerro Mojon, the highest mountain peak closest to the El Dragón mine.
1. Introduction
The Bolivian Andes host two mineralogically important selenide occurrences: Pacajake, district of Hiaco de Charcas; and El Dragόn, Province of Antonio Quijarro; both in the Department of Potosí. The El Dragόn mineralization represents a multi-phase assemblage of primary and secondary minerals, among which Se-bearing phases are the most prominent. It is the type locality for eldragόnite, Cu6BiSe4(Se2) [1]; favreauite, PbBiCu6O4(SeO3)4(OH)∙H2O [2]; grundmannite, CuBiSe2 [3]; hansblockite, (Cu,Hg)(Bi,Pb)Se2 [4]; alfredopetrovite, Al2(Se4+O3)3∙6H2O [5]; quijarroite, Cu6HgPb2Bi4Se12 [6]; and also contains the lately discovered rare orthorhombic dimorph of CuSe2, petříčekite [7]. A comprehensive survey of the geology and origin of the El Dragόn Se-mineralization was published by Grundmann and Förster (2017) [8], who also provided a full list of minerals recorded as from this locality.
This paper provides a description of a new species in the Cu–Hg–Pb–Bi–Se system, cerromojonite, ideally CuPbBiSe3, from El Dragόn. This new species and its name have been approved by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the IMA, proposal 2018-040. The X-rayed crystal is preserved by one of the authors (L.B.) at the Dipartimento di Scienze della Terra, Università degli Studi di Firenze. The polished section, from which the crystal was extracted (holotype), is housed in the collections of the Natural History Museum, London, with the catalogue number BM 2018, 11. Cotype material, consisting of another cerromojonite-bearing polished section, is deposited within the Mineralogical State Collection Munich (Mineralogische Staatssammlung München, Museum “Reich der Kristalle”), with the inventory number MSM 73583.
The species is named for Cerro Mojon, the highest mountain peak nearest to El Dragón (4292 m above sea level), located about 800 m northeast of the mine.
Unnamed phase “C”, described at El Dragón already in 2016 [3], for which no structural data were obtained, compositionally resembles cerromojonite. A species similar to cerromojonite was speculated to occur in carbonate veins in the Schlema–Alberoda U–Se–polymetallic deposit (Erzgebirge, Germany), forming tiny inclusions which are intimately intergrown with berzelianite [9,10]. However, neither compositional data of pure material nor structural data were provided for this material.
2. Geology
The abandoned El Dragón mine is situated in the Cordillera Oriental (southwestern Bolivia), about 30 km southwest of Cerro Rico de Potosí. It is located at 19°49′23.90″ S (latitude), 65°55′00.60″ W (longitude), at an altitude of 4160 m above sea level. The adit of the mine is on the orographic left side of the Rio Jaya Mayu, cutting through a series of thinly-stratified, pyrite-rich black shales, and reddish-grey, hematite-bearing siltstones, dipping 40° to the north. The almost vertical ore vein is located in the center of a 1.5-m-wide shear zone (average trend 135 degrees). In 1988, the selenium mineralization consisted of a single vein of small longitudinal extension (maximum 15-m-long gallery), ranging mostly from 0.5 to 2 cm in thickness.
3. Physical and Optical Properties
Cerromojonite occurs within two different mineral assemblages, which are interpreted as representing genetically distinct types.
Type-I cerromojonite (maximum grain size ~30 µm) crystallized in the interstices of quijarroite/hansblockite intersertal intergrowths, partly together with penroseite (NiSe2), klockmannite (CuSe), watkinsonite (Cu2PbBi4Se8), clausthalite (PbSe), and, more rarely, petrovicite (Cu3HgPbBiSe5) (Figure 1). These aggregates are cemented by umangite (Cu3Se2) and klockmannite. They were deposited at the surfaces of krut’aite–penroseite (CuSe2–NiSe2) solid solutions.
Cerromojonite type-II occurs within lath-shaped or acicular mineral aggregates (up to 2 mm in length and 200 μm in width), that are interpreted as pseudomorphs after the above described intersertal aggregates (Figure 2). In this case, it forms elongated thin-tabular crystals (up to 200 μm long and 40 μm wide), intimately (subparallel) intergrown with watkinsonite, and less frequently, quijarroite (Figure 3), clausthalite, unnamed CuNi2Se4 [11], and (according to energy-dispersive electron-microprobe analysis) two new Cu–(Ag)–Hg–Pb–Bi selenides (Figure 4), which were all cemented by klockmannite. These pseudomorphs occasionally show parallel intergrowth of grains, which is implied by the serrated prismatic grain surfaces. They are usually deposited in interstices in brecciated krut’aite–penroseite (CuSe2–NiSe2) grains. The appearance of the cerromojonite grains resembles a spinifex texture, indicating fast crystallization. Type-II cerromojonite and associated minerals are themselves altered by late klockmannite, fracture-filling chalcopyrite, covellite, goethite, endmember petříčekite and krut’aite (CuSe2), and native selenium (Figure 5).
Cerromojonite is black in color and possesses a black streak. The mineral is opaque in transmitted light, exhibits a metallic luster, and is non-fluorescent. No cleavage and parting is observed, and the fracture is irregular. Density and Mohs hardness could not be measured owing to the small crystal size. The calculated density is 7.035 g/cm3 (for Z = 4), based on the empirical formula (see below) and the unit-cell parameters derived from X-ray single-crystal refinement.
In plane-polarized incident light, cerromojonite is grey to cream-white. In the assemblage with klockmannite and watkinsonite, it is weakly pleochroic or bireflectant. The mineral does not show any internal reflections. Between crossed polarizers, cerromojonite is weakly anisotropic, with rotation tints in shades of brown and grey (Figure 6). Twinning of cerromojonite is expressed either by distinct sharp polysynthetic lamellae (Figure 7) or by finely divided twinning in fan-shaped aggregates.
Quantitative reflectance measurements were performed in air relative to a WTiC standard (Zeiss number 314) by means of a J & M TIDAS diode array spectrometer (J & M Analytik AG, Essingen, Germany), running ONYX software (Version 1.1, Cavendish Instruments Ltd., Sheffield, UK) on a Zeiss Axioplan ore microscope (Carl Zeiss AG, Oberkochen, Germany) (Table 1, Figure 8). Measurements were made on unoriented grains at extinction positions leading to the designation of R1 (minimum) and R2 (maximum).
Reflectance percentages (R1 and R2) for the four Commission on Minerals (COM) wavelengths are: 48.8, 50.3 (470 nm); 48.2, 51.8 (546 nm); 47.8, 52.0 (589 nm); 47.2, 52.0 (650 nm).
4. Chemical Data
Cerromojonite was checked for concentrations of Cu, Ag, Pb, Hg, Fe, Co, Ni, As, Sb, Bi, S, and Se. Twenty-four spot analyses of type-II cerromojonite from the holotype section, were performed using a JEOL JXA-8230 electron microprobe (WDS mode, 20 kV, 20 nA, 1–2 μm beam size) (JEOL Ltd., Akishima, Japan). The composition of the grain used for the structural study corresponds chemically to the other grains analyzed by microprobe, which were proved to be homogeneous within 2σ standard deviations of the analyzed elements. The counting time on the peak was 20 s, with half that time on background on both sites of the peak. The following standards, emission lines, and analyzing crystals (in parentheses) were used: Cu–eskebornite, Kα (LIFL); Ag–bohdanowiczite, Lα (PETJ); Pb–galena, Mα (PETH); Hg–cinnabar, Lα (LIFL); Fe–chalcopyrite, Kα (LIFL); Co–cobaltite, Kα (LIFL); Ni–pentlandite, Kα (LIFL); As–skutterudite, Lα (TAP); Sb–skutterudite, Lα (PETJ); Bi–synthetic Bi2Se3, Mα (PETH); S–chalcopyrite, Kα (PETJ); Se–synthetic Bi2Se3, Kα (LIFL). The software-implemented PRZ (XPP metal) data-correction routine (JEOL EPMA version 10) (JEOL Ltd., Akishima, Japan), which is based on the ф(ρZ) method [13], was used for data processing. Table 2 compiles the analytical data for cerromojonite (means of 24 spot analyses, ranges, and standard deviations). Table 3 provides a selection of results from microprobe spot analyses of cerromojonite, together with the elemental detection limits (d.l.).
(Cu0.89Hg0.11)Σ = 1.00(Pb0.56Ag0.16Hg0.15 Bi0.11 Fe0.01)Σ = 0.99Bi1.00Se3.01 is the empirical formula of cerromojonite (based on 6 atoms pfu). The ideal formula of the mineral is CuPbBiSe3, corresponding to the ideal contents of the elements (in wt %) Cu 8.87, Pb 28.92, Bi 29.15, Se 33.06, sum 100.00.
5. X-ray Crystallography and Description of the Crystal Structure
X-ray powder diffraction data (Table 4) were obtained from the same fragment used for the single-crystal study (see below), with an Oxford Diffraction Excalibur PX Ultra diffractometer (Oxford Diffraction, Oxford, UK), fitted with a 165 mm diagonal Onyx CCD detector, and using copper radiation (CuKα, λ = 1.54138 Å). The working conditions were 40 kV and 40 mA, with 1 hour of exposure; the detector-to-sample distance was 7 cm.
The program Crysalis RED [14] was used to convert the observed diffraction rings to a conventional powder diffraction pattern. Least squares refinement gave the following orthorhombic unit-cell values: a = 8.2004(6) Å, b = 8.7461(5) Å, c = 8.0159(5) Å, V = 574.91(5) Å3, and Z = 4.
A small crystal (0.040 × 0.055 × 0.060 mm3) of type-II cerromojonite was handpicked from the holotype specimen (it is registered under the number #123 in the mineralogical collection of one of the Authors, G.G.). The crystal was preliminarily examined with a Bruker-Enraf MACH3 single-crystal diffractometer (Bruker, Karlsruhe, Germany), using graphite-monochromatized MoKα radiation. Single-crystal X-ray diffraction intensity data were collected using an Oxford Diffraction Xcalibur diffractometer equipped with an Oxford Diffraction CCD detector, with graphite-monochromatized MoKα radiation (λ = 0.71073 Å). The data were integrated, and corrected for standard Lorentz and polarization factors, with the CrysAlis RED package [12]. The program ABSPACK in CrysAlis RED [12] was used for the absorption correction. Table 5 reports details of the selected crystal, data collection, and refinement.
Statistical tests (|E2 − 1| = 0.821) and systematic absences agreed with the acentric space group Pn21m. The crystal structure was refined starting from the atomic coordinates of bournonite [15]. Given the observed larger unit-cell volume of cerromojonite (i.e., 575.7 Å3) compared to bournonite (i.e., 552.3 Å3; [15]), the site occupancy factor (s.o.f.) at the crystallographic sites was allowed to vary (Pb vs. Ag and Bi vs. Ag for the Pb and Bi sites; Cu vs. Hg for the Cu site; Se vs. S for the anionic site), using scattering curves for neutral atoms taken from the International Tables for Crystallography [16]. After several cycles of anisotropic refinement, a final R1 = 0.0256 for 701 reflections with Fo > 4 σ(Fo) and 68 refined parameters was achieved (0.0315 for all 1359 reflections). Atomic coordinates, site occupancies, and equivalent isotropic displacement parameters are listed in Table 6, whereas anisotropic displacement parameters are given in Table 7. Selected bond distances and bond-valence sums are provided in Table 8. The Crystallographic Information File (CIF) is available as Supplementary Material.
The crystal structure of cerromojonite (Figure 9) is identical to those of the three members of the bournonite group: bournonite (PbCuSbS3), seligmannite (PbCuAsS3), and součekite (PbCuBi(S,Se)3). It consists of [7,9]Pb-polyhedra, [3+2,3+3]Bi-polyhedra, and CuSe4 tetrahedra, which share corners and edges to form a 3-dimensional framework; CuSe4 tetrahedra share corners to form chains parallel to [001] (Figure 10). The two Pb sites were found to exhibit a mean electron number of 75.0 and 72.9 electrons, respectively. According to their structural environments, and taking into account the bond-valence sums calculated using the parameters of Breese and O’Keeffe [17], the following site-populations were determined: Pb0.52Ag0.20Bi0.16Hg0.12 and Pb0.60Hg0.16Ag0.12Bi0.05□0.07. Bi-sites were thought to be filled by Bi only (according to the site-occupancy refinement), whereas the Cu site (35.6 electrons) was determined to be Cu0.88Hg0.12. Such a cation distribution is in agreement with the observed bond distances.
The overall crystallochemical formula, as obtained through the single-crystal X-ray diffraction study, is [Cu0.880Hg0.120]Bi[Pb0.560Ag0.155Hg0.142Bi0.107□0.036]Se3 (Z = 4), and is in excellent agreement with that obtained from electron microprobe data.
6. Discussion
Cerromojonite is a new member of the bournonite group and represents the Se-analogue of součekite, CuPbBi(S,Se)3 [12,18]. Interestingly, whereas previously analyzed součekite always contained appreciable amounts of Se (together with minor Te) substituting for S, cerromojonite from El Dragón is practically devoid of S, containing S at concentrations below its detection limit of ~200 ppm. Moreover, součekite is characterized by an almost ideal occupancy of the Cu-, Pb-, and Bi-sites, in contrast to cerromojonite, where significant amounts of other cations, in particular Ag and Hg, entered the structure.
Conclusions on the physico-chemical environment of cerromojonite formation could be drawn from the associated Cu selenides. It is apparent that type-I cerromojonite crystallized together with umangite and klockmannite, implying that selenium fugacities (fSe2) fluctuated around values defined by the umangite–klockmannite univariant reaction. Type-II cerromojonite precipitated in equilibrium with klockmannite, outside the stability fields of umangite and krut’aite. At T = 100 °C, a temperature typical for the formation of vein-type selenide deposits, and an elevated oxygen fugacity defined by the magnetite–hematite buffer, these paragenetic relations are consistent with the range of log fSe2 between −14.6 and −11.6 [19]. The absence of krut’aite and sulfides (chalcopyrite, pyrite) define the maximum log of sulfur fugacity (fS2) to be roughly −19.
Supplementary Materials
Author Contributions
G.G. collected the samples and manufactured the polished sections; H.-J.F. and G.G. found the new mineral; H.-J.F. conducted the electron-microprobe analyses; L.B. performed the X-ray structural investigations; C.J.S. and G.G. determined the optical and physical properties; H.-J.F. wrote the paper.
Funding
This research received no external funding.
Acknowledgments
The research was supported by “progetto d’Ateneo 2015, University of Firenze” to L.B. C.J.S. acknowledges Natural Environment Research Council grant NE/M010848/1 Tellurium and Selenium Cycling and Supply. Oona Appelt (GFZ) provided assistance with the electron-microprobe work. Constructive comments of two anonymous reviewers helped to improve the paper.
Conflicts of Interest
The authors declare no conflict of interest.
References
- Paar, W.H.; Cooper, M.A.; Moёlo, Y.; Stanley, C.J.; Putz, H.; Topa, D.; Roberts, A.C.; Stirling, J.; Raith, J.G.; Rowe, R. Eldragόnite, Cu6BiSe4(Se)2, a new mineral species from the El Dragόn mine, Potosí, Bolivia, and its crystal structure. Can. Mineral. 2012, 50, 281–294. [Google Scholar] [CrossRef]
- Mills, S.J.; Kampf, A.R.; Christy, A.G.; Housley, R.M.; Thorne, B.; Chen, Y.; Steele, I.M. Favreauite, a new selenite mineral from the El Dragόn mine, Bolivia. Eur. J. Mineral. 2014, 26, 771–781. [Google Scholar] [CrossRef]
- Förster, H.-J.; Bindi, L.; Stanley, C.J. Grundmannite, CuBiSe2, the Se-analogue of emplectite: A new mineral from the El Dragόn mine, Potosí, Bolivia. Eur. J. Mineral. 2016, 28, 467–477. [Google Scholar] [CrossRef]
- Förster, H.-J.; Bindi, L.; Stanley, C.J.; Grundmann, G. Hansblockite, (Cu,Hg)(Bi,Pb)Se2, the monoclinic polymorph of grundmannite, a new mineral from the Se mineralization at El Dragón (Bolivia). Mineral. Mag. 2017, 81, 629–640. [Google Scholar] [CrossRef]
- Kampf, A.R.; Mills, S.J.; Nash, B.P.; Thorne, B.; Favreau, G. Alfredopetrovite: A new selenite mineral from the El Dragόn mine. Eur. J. Mineral. 2016, 28, 479–484. [Google Scholar] [CrossRef]
- Förster, H.-J.; Bindi, L.; Grundmann, G.; Stanley, C.J. Quijarroite, Cu6HgPb2Bi4Se12, a new selenide from the El Dragόn mine, Bolivia. Minerals 2016, 6, 123. [Google Scholar] [CrossRef]
- Bindi, L.; Förster, H.-J.; Grundmann, G.; Keutsch, F.N.; Stanley, C.J. Petříčekite, CuSe2, a new member of the marcasite group from the Předbořice deposit, Central Bohemia Region, Czech Republic. Minerals 2016, 6, 33. [Google Scholar] [CrossRef]
- Grundmann, G.; Förster, H.-J. Origin of the El Dragón selenium mineralization, Quijarro province, Potosí, Bolivia. Minerals 2017, 7, 68. [Google Scholar] [CrossRef]
- Dymkov, Y.M.; Ryzhov, B.I.; Begizov, V.I.; Dubakina, L.S.; Zav’yalov, E.N.; Ryabeva, V.G.; Tsvetkova, M.V. Mgriite, bismuth petrovicite and associated selenides from carbonate veins of the Erzgebirge. Novye Dannye o Mineralakh 1991, 37, 81–101. (In Russian) [Google Scholar]
- Jambor, J.L.; Pertsev, N.N.; Roberts, A.C. New mineral names. Amer. Mineral. 1995, 80, 845–850. [Google Scholar]
- IMA-CNMNC proposal. 2018; submitted.
- Johan, Z.; Picot, P.; Ruhlmann, F. The ore mineralogy of the Otish Mountains uranium deposit, Quebec: Skippenite, Bi2Se2Te, and watkinsonite, Cu2PbBi4(Se,S)8, two new mineral species. Can. Mineral. 1987, 25, 625–638. [Google Scholar]
- Heinrich, K.F.J.; Newbury, D.E. Electron Probe Quantitation; Plenum Press: New York, NY, USA, 1991. [Google Scholar]
- Oxford Diffraction. CrysAlis RED (Version 1.171.31.2) and ABSPACK in CrysAlis RED; Oxford Diffraction Ltd.: Oxfordshire, UK, 2006. [Google Scholar]
- Edenharter, A.; Nowacki, W.; Takéuchi, Y. Verfeinerung der Kristallstruktur von Bournonit [(SbS3)2|CuIV2PbVIIPbVIII] und von Seligmannit [(AsS3)2|CuIV2PbVIIPbVIII]. Z. Krist. 1970, 131, 397–417. [Google Scholar] [CrossRef]
- Maslon, E.N.; Fox, A.G.; O’Keefe, M.A. Mathematical, physical and chemical tables. In International Tables for Crystallography; Wilson, A.J.C., Ed.; Kluwer Academic: Dordrecht, The Netherlands, 1992; Volume C. [Google Scholar]
- Breese, N.E.; O’Keeffe, M. Bond-Valence parameters for solids. Acta Cryst. 1991, B47, 192–197. [Google Scholar] [CrossRef]
- Čech, F.; Vavřín, I. Součekite, CuPbBi(S,Se)3, a new mineral of the bournonite group. Neues Jahrbuch für Mineralogie, Monatshefte 1979, 1979, 289–295. [Google Scholar]
- Simon, G.; Kesler, S.E.; Essene, E.J. Phase relations among selenides, sulphides, tellurides, and oxides: II. Applications to selenide-bearing ore deposits. Econ. Geol. 1997, 92, 468–484. [Google Scholar] [CrossRef]
Figure 1. Back-scattered electron (BSE) image of type-I cerromojonite intergrown with hansblockite and quijarroite, forming an angular network-like intersertal texture. Abbreviations: ce = cerromojonite, hb = hansblockite, qu = quijarroite.
Figure 1. Back-scattered electron (BSE) image of type-I cerromojonite intergrown with hansblockite and quijarroite, forming an angular network-like intersertal texture. Abbreviations: ce = cerromojonite, hb = hansblockite, qu = quijarroite.
Figure 2. BSE image showing a pseudomorph composed of bright type-II cerromojonite, watkinsonite, and quijarroite, cemented by medium-grey klockmannite. Abbreviations: k–p = krut’aite–penroseite solid solutions, kl = klockmannite, g = goethite.
Figure 2. BSE image showing a pseudomorph composed of bright type-II cerromojonite, watkinsonite, and quijarroite, cemented by medium-grey klockmannite. Abbreviations: k–p = krut’aite–penroseite solid solutions, kl = klockmannite, g = goethite.
Figure 3. BSE image of type-II cerromojonite (ce) intergrown with quijarroite (qu) and watkinsonite (w).
Figure 3. BSE image of type-II cerromojonite (ce) intergrown with quijarroite (qu) and watkinsonite (w).
Figure 4. BSE image of parallel-intergrown type-II cerromojonite (ce) grains with darker domains of an unknown Cu–(Ag)–Hg–Pb–Bi selenide. The biggest grain of this potentially new species is marked by a question mark.
Figure 4. BSE image of parallel-intergrown type-II cerromojonite (ce) grains with darker domains of an unknown Cu–(Ag)–Hg–Pb–Bi selenide. The biggest grain of this potentially new species is marked by a question mark.
Figure 5. Type-II cerromojonite-bearing pseudomorph progressively altered by goethite and sulfides (reflected light, horizontal field of view is 500 µm). Abbreviations: ce = cerromojonite, ch = chalcopyrite, cl = clausthalite, co = covellite, g = goethite, kl = klockmannite, k–p = krut’aite–penroseite solid solution, p = penroseite, w = watkinsonite, u = unnamed CuNi2Se4.
Figure 5. Type-II cerromojonite-bearing pseudomorph progressively altered by goethite and sulfides (reflected light, horizontal field of view is 500 µm). Abbreviations: ce = cerromojonite, ch = chalcopyrite, cl = clausthalite, co = covellite, g = goethite, kl = klockmannite, k–p = krut’aite–penroseite solid solution, p = penroseite, w = watkinsonite, u = unnamed CuNi2Se4.
Figure 6. Type-II cerromojonite and associated minerals in plane polarized light (a), and at partially crossed polarizers (b) (horizontal field of view is 200 μm). Lamellar twinning on {110} of cerromojonite is well displayed in (b). Abbreviations: ce = cerromojonite, g = goethite, kl = klockmannite, u = unnamed CuNi2Se4.
Figure 6. Type-II cerromojonite and associated minerals in plane polarized light (a), and at partially crossed polarizers (b) (horizontal field of view is 200 μm). Lamellar twinning on {110} of cerromojonite is well displayed in (b). Abbreviations: ce = cerromojonite, g = goethite, kl = klockmannite, u = unnamed CuNi2Se4.
Figure 7. Type-II cerromojonite associated with klockmannite, unnamed CuNi2Se4, clausthalite, and later-formed goethite in reflected light: (a) 1 polarizer, (b) partially crossed polarizers. Horizontal field of view is 200 µm. Abbreviations: ce = cerromojonite, kl = klockmannite, w = watkinsonite, cl = clausthalite, u = unnamed CuNi2Se4, g = goethite.
Figure 7. Type-II cerromojonite associated with klockmannite, unnamed CuNi2Se4, clausthalite, and later-formed goethite in reflected light: (a) 1 polarizer, (b) partially crossed polarizers. Horizontal field of view is 200 µm. Abbreviations: ce = cerromojonite, kl = klockmannite, w = watkinsonite, cl = clausthalite, u = unnamed CuNi2Se4, g = goethite.
Figure 8. Reflectance spectra of type-II cerromojonite and its most frequently associated Cu–Bi selenides: quijarroite [6] and watkinsonite [12].
Figure 8. Reflectance spectra of type-II cerromojonite and its most frequently associated Cu–Bi selenides: quijarroite [6] and watkinsonite [12].
Figure 9. The crystal structure of cerromojonite projected down [001] (six unit-cells). The unit-cell and orientation of the figure are outlined. Symbols: Bi = green dots, Pb = blue dots, Cu = light blue dots, Se = orange dots.
Figure 9. The crystal structure of cerromojonite projected down [001] (six unit-cells). The unit-cell and orientation of the figure are outlined. Symbols: Bi = green dots, Pb = blue dots, Cu = light blue dots, Se = orange dots.
Figure 10. The crystal structure of cerromojonite projected down [100] (six unit-cells). Symbols as in Figure 9. CuSe4 tetrahedra are depicted as light blue polyhedra. The unit-cell and orientation of the figure are outlined.
Figure 10. The crystal structure of cerromojonite projected down [100] (six unit-cells). Symbols as in Figure 9. CuSe4 tetrahedra are depicted as light blue polyhedra. The unit-cell and orientation of the figure are outlined.
Table 1. Reflectance data.
Table 1. Reflectance data.
λ (nm) | R1 (%) | R2 (%) | λ (nm) | R1 (%) | R2 (%) |
---|---|---|---|---|---|
400 | 47.0 | 48.0 | 560 | 48.1 | 51.9 |
420 | 47.2 | 48.6 | 580 | 47.9 | 52.0 |
440 | 47.5 | 49.3 | 600 | 47.7 | 52.1 |
460 | 47.8 | 50.0 | 620 | 47.5 | 52.1 |
480 | 48.1 | 50.6 | 640 | 47.3 | 52.0 |
500 | 48.3 | 51.1 | 660 | 47.1 | 51.9 |
520 | 48.3 | 51.5 | 680 | 46.9 | 51.7 |
540 | 48.3 | 51.7 | 700 | 46.8 | 51.6 |
Table 2. Chemical data for cerromojonite.
Table 2. Chemical data for cerromojonite.
Element | Mean | Range | e.s.d. |
---|---|---|---|
Cu (wt %) | 7.91 | 7.40–8.16 | 0.18 |
Ag | 2.35 | 2.16–2.54 | 0.11 |
Hg | 7.42 | 7.19–7.60 | 0.10 |
Pb | 16.39 | 16.15–16.77 | 0.13 |
Fe | 0.04 | 0.00–0.18 | 0.04 |
Ni | 0.02 | 0.00–0.18 | 0.04 |
Bi | 32.61 | 32.19–32.91 | 0.20 |
Se | 33.37 | 32.93–33.81 | 0.24 |
Total | 100.11 | 99.24–100.79 | 0.42 |
Table 3. Representative results of electron-microprobe spot analyses of cerromojonite.
Table 3. Representative results of electron-microprobe spot analyses of cerromojonite.
Element | d.l. (ppm) | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
Cu (wt %) | 250 | 7.40 | 7.75 | 8.09 | 8.03 | 7.91 | 7.91 |
Ag | 200 | 2.45 | 2.54 | 2.30 | 2.33 | 2.54 | 2.27 |
Hg | 1100 | 7.48 | 7.46 | 7.37 | 7.38 | 7.32 | 7.33 |
Pb | 400 | 16.29 | 16.31 | 16.50 | 16.46 | 16.34 | 16.36 |
Fe | 150 | b.d.l. | 0.14 | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
Ni | 200 | b.d.l. | 0.04 | b.d.l. | b.d.l. | 0.11 | 0.03 |
Bi | 300 | 32.74 | 32.76 | 32.78 | 32.80 | 32.42 | 32.51 |
Se | 800 | 33.48 | 33.27 | 33.58 | 33.31 | 33.07 | 33.56 |
Total | 99.86 | 100.28 | 100.64 | 100.22 | 99.74 | 99.98 | |
Cu (a.p.f.u.) | 0.84 | 0.87 | 0.90 | 0.90 | 0.89 | 0.89 | |
Ag | 0.16 | 0.17 | 0.15 | 0.15 | 0.17 | 0.15 | |
Hg | 0.27 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | |
Pb | 0.56 | 0.56 | 0.56 | 0.57 | 0.56 | 0.56 | |
Fe | - | 0.02 | - | - | - | - | |
Ni | - | - | - | - | 0.01 | - | |
Bi | 1.12 | 1.12 | 1.11 | 1.12 | 1.11 | 1.11 | |
Se | 3.04 | 3.00 | 3.01 | 3.01 | 2.99 | 3.03 |
Table 4. Measured and calculated X-ray powder diffraction data (d in Å) for cerromojonite. The strongest measured diffraction lines are given in bold.
Table 4. Measured and calculated X-ray powder diffraction data (d in Å) for cerromojonite. The strongest measured diffraction lines are given in bold.
hkl | dmeas | Imeas | dcalc | Icalc |
---|---|---|---|---|
020 | - | - | 4.3705 | 4 |
- | 4.08 | 10 | 4.1010 | 9 |
002 | 4.00 | 20 | 4.0145 | 15 |
120 | 3.86 | 25 | 3.8571 | 20 |
210 | 3.70 | 10 | 3.7127 | 9 |
112 | 3.32 | 10 | 3.3333 | 9 |
220 | 2.991 | 10 | 2.9906 | 10 |
022 | - | - | 2.9565 | 6 |
202 | - | - | 2.8688 | 7 |
122 | 2.783 | 100 | 2.7814 | 100 |
130 | 2.747 | 10 | 2.7456 | 12 |
212 | 2.727 | 55 | 2.7257 | 50 |
310 | 2.608 | 40 | 2.6093 | 37 |
222 | - | - | 2.3983 | 5 |
320 | - | - | 2.3178 | 3 |
132 | - | - | 2.2663 | 9 |
312 | - | - | 2.1878 | 5 |
040 | 2.186 | 10 | 2.1853 | 14 |
004 | 1.999 | 25 | 2.0073 | 21 |
330 | 1.992 | 20 | 1.9937 | 21 |
042 | - | - | 1.9193 | 4 |
142 | 1.867 | 10 | 1.8688 | 12 |
412 | 1.788 | 20 | 1.7875 | 22 |
332 | - | - | 1.7856 | 6 |
124 | - | - | 1.7806 | 4 |
242 | - | - | 1.7384 | 6 |
422 | - | - | 1.6849 | 3 |
224 | - | - | 1.6666 | 3 |
134 | - | - | 1.6204 | 4 |
314 | 1.592 | 20 | 1.5910 | 14 |
252 | 1.494 | 10 | 1.4928 | 10 |
044 | - | - | 1.4783 | 7 |
522 | - | - | 1.4344 | 4 |
530 | - | - | 1.4294 | 4 |
334 | 1.415 | 10 | 1.4145 | 12 |
260 | - | - | 1.3728 | 4 |
600 | - | - | 1.3670 | 4 |
126 | - | - | 1.2642 | 6 |
452 | - | - | 1.2628 | 8 |
216 | - | - | 1.2589 | 3 |
534 | - | - | 1.1644 | 3 |
264 | - | - | 1.1331 | 4 |
604 | - | - | 1.1299 | 4 |
416 | - | - | 1.1115 | 3 |
722 | - | - | 1.0893 | 5 |
182 | - | - | 1.0457 | 3 |
456 | - | - | 0.9434 | 3 |
Table 5. Data and experimental details for the selected cerromojonite crystal.
Table 5. Data and experimental details for the selected cerromojonite crystal.
Crystal Data | |
---|---|
Ideal formula | CuPbBiSe3 |
Crystal size (mm3) | 0.040 × 0.055 × 0.060 |
Form | Block |
Color | Black |
Crystal system | Orthorhombic |
Space group | Pn21m |
a (Å) | 8.202(1) |
b (Å) | 8.741(1) |
c (Å) | 8.029(1) |
V (Å3) | 575.7(1) |
Z | 4 |
Data Collection | |
Instrument | Oxford Diffraction Xcalibur 3 |
Radiation type | MoKα (λ = 0.71073 Å) |
Temperature (K) | 293(3) |
Detector to sample distance (cm) | 6 |
Number of frames | 889 |
Measuring time (s) | 50 |
Maximum covered 2θ (°) | 59.30 |
Absorption correction | multi-scan [12] |
Collected reflections | 3504 |
Unique reflections | 1359 |
Reflections with Fo > 4σ(Fo) | 701 |
Rint | 0.0356 |
Rσ | 0.0412 |
Range of h, k, l | 0 ≤ h ≤ 11, −12 ≤ k ≤ 8, 0 ≤ l ≤ 10 |
Refinement | Full-matrix least squares on F2 |
Final R1 [Fo > 4σ(Fo)] | 0.0256 |
Final R1 (all data) | 0.0315 |
S | 1.09 |
Number refined parameters | 68 |
Δρmax (e Å−3) | 1.81 |
Δρmin (e Å−3) | −2.06 |
Table 6. Atoms, site occupancy factors (s.o.f.), fractional atomic coordinates (x, y, z), and equivalent isotropic displacement parameters (Ueq, Å2) for the selected cerromojonite crystal.
Table 6. Atoms, site occupancy factors (s.o.f.), fractional atomic coordinates (x, y, z), and equivalent isotropic displacement parameters (Ueq, Å2) for the selected cerromojonite crystal.
Atom | s.o.f. | x | y | z | Ueq |
---|---|---|---|---|---|
Pb1 | Pb0.80(2)Ag0.20 | 0.07291(13) | 0.9709(3) | 0 | 0.0108(5) |
Pb2 | Pb0.74(2)Ag0.26 | 0.56972(12) | 0.1758(3) | ½ | 0.0115(5) |
Bi1 | Bi1.00 | 0.07446(12) | 0.9807(2) | ½ | 0.0118(4) |
Bi2 | Bi1.00 | 0.55647(12) | 0.1819(2) | 0 | 0.0134(4) |
Cu | Cu0.870(8)Hg0.130 | 0.27526(17) | 0.42151(15) | 0.2439(3) | 0.0120(6) |
Se1 | Se1.00 | 0.2450(3) | 0.2494(4) | 0 | 0.0103(6) |
Se2 | Se1.00 | 0.2316(3) | 0.2595(4) | ½ | 0.0105(6) |
Se3 | Se1.00 | 0.08564(19) | 0.65945(19) | 0.2374(4) | 0.0102(4) |
Se4 | Se1.00 | 0.57919(18) | 0.4826(2) | 0.2675(4) | 0.0096(4) |
Table 7. Anisotropic displacement parameters (U) of the atoms for the selected cerromojonite crystal.
Table 7. Anisotropic displacement parameters (U) of the atoms for the selected cerromojonite crystal.
Atom | U11 | U22 | U33 | U12 | U13 | U23 |
---|---|---|---|---|---|---|
Pb1 | 0.0116(7) | 0.0118(11) | 0.0089(7) | 0.0005(5) | 0.000 | 0.000 |
Pb2 | 0.0102(8) | 0.0135(10) | 0.0107(8) | −0.0008(7) | 0.000 | 0.000 |
Bi1 | 0.0123(6) | 0.0122(10) | 0.0110(7) | −0.0001(4) | 0.000 | 0.000 |
Bi2 | 0.0149(6) | 0.0136(8) | 0.0118(6) | −0.0001(6) | 0.000 | 0.000 |
Cu | 0.0131(8) | 0.0125(7) | 0.0104(9) | 0.0007(4) | 0.0007(7) | −0.0003(10) |
Se1 | 0.0108(11) | 0.0119(16) | 0.0081(12) | −0.0007(10) | 0.000 | 0.000 |
Se2 | 0.0114(10) | 0.0111(15) | 0.0089(12) | 0.0001(10) | 0.000 | 0.000 |
Se3 | 0.0101(7) | 0.0108(7) | 0.0096(11) | −0.0004(6) | 0.0000(7) | 0.0036(13) |
Se4 | 0.0111(7) | 0.0108(7) | 0.0070(12) | −0.0002(7) | −0.0009(6) | −0.0004(12) |
Table 8. Bond distances (in Å) and bond valence sums (BVS in valence units) in the structure of cerromojonite.
Table 8. Bond distances (in Å) and bond valence sums (BVS in valence units) in the structure of cerromojonite.
Pb1-Se1 | 2.814(4) | Bi2-Se1 | 2.622(3) |
---|---|---|---|
Pb1-Se3 (×2) | 2.975(3) | Bi2-Se4 (×2) | 2.785(3) |
Pb1-Se2 | 3.107(3) | Bi2-Se4 (×2) | 3.395(3) |
Pb1-Se3 (×2) | 3.334(3) | Bi2-Se3 (×2) | 3.620(3) |
Pb1-Se4 (×2) | 3.408(3) | BVS | 3.22 |
BVS | 1.93 | ||
Cu-Se1 | 2.482(3) | ||
Pb2-Se2 | 2.868(3) | Cu-Se2 | 2.522(3) |
Pb2-Se4 (×2) | 2.993(3) | Cu-Se4 | 2.557(2) |
Pb2-Se4 (×2) | 3.268(3) | Cu-Se3 | 2.598(2) |
Pb2-Se3 (×2) | 3.412(3) | BVS | 1.29 |
BVS | 1.62 | ||
Bi1-Se2 | 2.757(4) | ||
Bi1-Se3 (×2) | 2.793(3) | ||
Bi1-Se1 | 3.314(3) | ||
Bi1-Se3 (×2) | 3.519(3) | ||
Bi1-Se4 (×2) | 3.563(3) | ||
BVS | 2.96 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
MDPI and ACS Style
Förster, H.-J.; Bindi, L.; Grundmann, G.; Stanley, C.J. Cerromojonite, CuPbBiSe3, from El Dragόn (Bolivia): A New Member of the Bournonite Group. Minerals 2018, 8, 420. https://doi.org/10.3390/min8100420
AMA Style
Förster H-J, Bindi L, Grundmann G, Stanley CJ. Cerromojonite, CuPbBiSe3, from El Dragόn (Bolivia): A New Member of the Bournonite Group. Minerals. 2018; 8(10):420. https://doi.org/10.3390/min8100420
Chicago/Turabian Style
Förster, Hans-Jürgen, Luca Bindi, Günter Grundmann, and Chris J. Stanley. 2018. "Cerromojonite, CuPbBiSe3, from El Dragόn (Bolivia): A New Member of the Bournonite Group" Minerals 8, no. 10: 420. https://doi.org/10.3390/min8100420
Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.
Article Metrics
Article Access Statistics
For more information on the journal statistics, click here.
Multiple requests from the same IP address are counted as one view.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.