The psychometric function: I. Fitting, sampling, and goodness of fit (original) (raw)
References
Collett, D. (1991).Modeling binary data. New York: Chapman & Hall/CRC. Google Scholar
Dobson, A. J. (1990).Introduction to generalized linear models. London: Chapman & Hall. Google Scholar
Draper, N. R., & Smith, H. (1981).Applied regression analysis. New York: Wiley. Google Scholar
Efron, B. (1979). Bootstrap methods: Another look at the jackknife.Annals of Statistics,7, 1–26. Article Google Scholar
Efron, B. (1982).The jackknife, the bootstrap and other resampling plans (CBMS-NSF Regional Conference Series in Applied Mathematics). Philadelphia: Society for Industrial and Applied Mathematics. Google Scholar
Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-validation.American Statistician,37, 36–48. Article Google Scholar
Efron, B., & Tibshirani, R. J. (1993).An introduction to the bootstrap. New York: Chapman & Hall. Google Scholar
Finney, D. J. (1952).Probit analysis (2nd ed.). Cambridge: Cambridge University Press. Google Scholar
Finney, D. J. (1971).Probit analysis (3rd ed.). Cambridge: Cambridge University Press. Google Scholar
Forster, M. R. (1999). Model selection in science: The problem of language variance.British Journal for the Philosophy of Science,50, 83–102. Article Google Scholar
Gelman, A. B., Carlin, J. S., Stern, H. S., & Rubin, D. B. (1995).Bayesian data analysis. New York: Chapman & Hall/CRC. Google Scholar
Hämmerlin, G., & Hoffmann, K.-H. (1991).Numerical mathematics (L. T. Schumacher, Trans.). New York: Springer-Verlag. Google Scholar
Harvey, L. O., Jr. (1986). Efficient estimation of sensory thresholds.Behavior Research Methods, Instruments, & Computers,18, 623–632. Article Google Scholar
Hinkley, D. V. (1988). Bootstrap methods.Journal of the Royal Statistical Society B,50, 321–337. Google Scholar
Hoel, P. G. (1984).Introduction to mathematical statistics. New York: Wiley. Google Scholar
Lam, C. F., Mills, J. H., & Dubno, J. R. (1996). Placement of observations for the efficient estimation of a psychometric function.Journal of the Acoustical Society of America,99, 3689–3693. ArticlePubMed Google Scholar
Leek, M. R., Hanna, T. E., & Marshall, L. (1992). Estimation of psychometric functions from adaptive tracking procedures.Perception & Psychophysics,51, 247–256. Google Scholar
McCullagh, P., & Nelder, J. A. (1989).Generalized linear models. London: Chapman & Hall. Google Scholar
McKee, S. P., Klein, S. A., & Teller, D. Y. (1985). Statistical properties of forced-choice psychometric functions: Implications of probit analysis.Perception & Psychophysics,37, 286–298. Google Scholar
Nachmias, J. (1981). On the psychometric function for contrast detection.Vision Research,21, 215–223. ArticlePubMed Google Scholar
O’Regan, J. K., & Humbert, R. (1989). Estimating psychometric functions in forced-choice situations: Significant biases found in threshold and slope estimation when small samples are used.Perception & Psychophysics,45, 434–442. Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992).Numerical recipes in C: The art of scientific computing (2nd ed.). New York: Cambridge University Press. Google Scholar
Quick, R. F. (1974). A vector magnitude model of contrast detection.Kybernetik,16, 65–67. ArticlePubMed Google Scholar
Schmidt, F. L. (1996). Statistical significance testing and cumulative knowledge in psychology: Implications for training of researchers.Psychological Methods,1, 115–129. Article Google Scholar
Swanson, W. H., & Birch, E. E. (1992). Extracting thresholds from noisy psychophysical data.Perception & Psychophysics,51, 409–422. Google Scholar
Treutwein, B. (1995). Adaptive psychophysical procedures.Vision Research,35, 2503–2522. PubMed Google Scholar
Treutwein, B., & Strasburger, H. (1999). Fitting the psychometric function.Perception & Psychophysics,61, 87–106. Google Scholar
Weibull, W. (1951). Statistical distribution function of wide applicability.Journal of Applied Mechanics,18, 292–297. Google Scholar
Wichmann, F. A. (1999).Some aspects of modelling human spatial vision: Contrast discrimination. Unpublished doctoral dissertation, Oxford University.
Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: II. Bootstrap-based confidence intervals and sampling.Perception & Psychophysics,63, 1314–1329. Article Google Scholar