The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective (original) (raw)
References
Ackerly, S. (1937). Instinctive, emotional and mental changes following prefrontal lobe extirpation.American Journal of Psychiatry,92, 717–729. Google Scholar
Ahola, K., Vilkki, J., &Servo, A. (1996). Frontal tests do not detect frontal infarctions after ruptured intracranial aneurysm.Brain & Cognition,31, 1–16. Google Scholar
Alexander, G. E., &Fuster, J. M. (1973). Effects of cooling prefrontal cortex on cell firing in the nucleus medialis dorsalis.Brain Research,61, 93–105. PubMed Google Scholar
Allport, D. A., Styles, E. A., &Hsieh, S. (1994). Shifting attentional set: Exploring the dynamic control of tasks. In C. Umiltà & M. Moscovitch (Eds.),Attention and performance XV: Conscious and nonconscious information processing (pp. 421–452). Hillsdale, NJ: Erlbaum. Google Scholar
Anderson, S. W., Damasio, H., Jones, R. D., &Tranel, D. (1991). Wisconsin Card Sorting Test performance as a measure of frontal lobe damage.Journal of Clinical & Experimental Neuropsychology,13, 909–922. Google Scholar
Arthur, W., Jr.,Barrett, G. V., &Doverspike, D. (1990). Validation of an information-processing-based test battery for the prediction of handling accidents among petroleum-product transport drivers.Journal of Applied Psychology,75, 621–628. Google Scholar
Awh, E., Jonides, J., Smith, E. E., Schumacher, E. H., Koeppe, R. A., &Katz, S. (1996). Dissociation of storage and rehearsal in verbal working memory: Evidence from positron emission tomography.Psychological Science,7, 25–31. Google Scholar
Baddeley, A. D. (1996). Exploring the central executive.Quarterly Journal of Experimental Psychology,49A, 5–28. Google Scholar
Baddeley, A. D., Della Sala, S., Papagno, C., &Spinnler, H. (1997). Dual-task performance in dysexecutive and nondysexecutive patients with a frontal lesion.Neuropsychology,11, 187–194. PubMed Google Scholar
Baddeley, A. D., &Hitch, G. (1974). Working memory. In G. A. Bower (Ed.),The psychology of learning and motivation (Vol. 8, pp. 47–89). New York: Academic Press. Google Scholar
Baddeley, A. D., &Logie, R. (1999). Working memory: The multiple component model. In A. Miyake & P. Shah (Eds.),Models of working memory: Mechanisms of active maintenance and executive control (pp. 28–61). New York: Cambridge University Press. Google Scholar
Baker, S. C., Frith, C. D., Frackowiak, R. S. J., &Dolan, R. J. (1996). Active representation of shape and spatial location in man.Cerebral Cortex,6, 612–619. PubMed Google Scholar
Baldo, J. V., &Shimamura, A. P. (1998). Letter and category fluency in patients with frontal lobe lesions.Neuropsychology,12, 259–267. PubMed Google Scholar
Baldo, J. V., &Shimamura, A. P. (2000). Spatial and color working memory in patients with lateral prefrontal cortex lesions.Psychobiology,28, 156–167. Google Scholar
Banich, M. T., Milham, M. P., Atchley, R. A., Cohen, N. J., Webb, A., Wszalek, T., Kramer, A. F., Liang, Z. P., Wright, A., Shenker, J., &Magin, R. (2000). fMRI studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection.Journal of Cognitive Neuroscience,12, 988–1000. PubMed Google Scholar
Barbas, H., &Mesulam, M. M. (1981). Organization of afferent input to subdivisions of area 8 in the rhesus monkey.Journal of Comparative Neurology200, 407–431. PubMed Google Scholar
Barbas, H., &Mesulam, M. M. (1985). Cortical afferent input to the principalis region of the rhesus monkey.Neuroscience,15, 619–637. PubMed Google Scholar
Barbas, H., &Pandya, D. N. (1991). Patterns of connections of the prefrontal cortex in the rhesus monkey associated with cortical architecture. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.),Frontal lobe function and dysfunction (pp. 35–58). Oxford: Oxford University Press. Google Scholar
Barch, D. M., Braver, T. S., Nyström, L. E., Forman, S. D., Noll, D. C., &Cohen, J. D. (1997). Dissociating working memory from task difficulty in human prefrontal cortex.Neuropsychologia,35, 1373–1380. PubMed Google Scholar
Bartus, R. T., &LaVere, T. E. (1977). Frontal decortication in rhesus monkeys: A test of the interference hypothesis.Brain Research,119, 233–248. PubMed Google Scholar
Battersby, W. S., Krieger, H. P., Pollack, M., &Bender, M. B. (1953). Figure-ground discrimination and the “abstract attitude” in patients with cerebral lesions.Archives of Neurology & Psychiatry,70, 703–712. Google Scholar
Battig, K., Rosvold, H. E., &Mishkin, M. (1960). Comparison of the effects of frontal and caudate lesions on delayed response and alternation in monkeys.Journal of Comparative & Physiological Psychology,53, 400–404. Google Scholar
Batuev, A. S., Shaefer, V. I., &Orlov, A. A. (1985). Comparative characteristics of unit activity in the prefrontal and parietal areas during delayed performance in monkeys.Behavioural Brain Research,16, 57–70. PubMed Google Scholar
Bauer, R. H., &Fuster, J. M. (1976). Delayed-matching and delayedresponse deficit from cooling dorsolateral prefrontal cortex in monkeys.Journal of Comparative & Physiological Psychology,90, 293–302. Google Scholar
Baylis, G. C., &Rolls, E. T. (1987). Responses of neurons in the inferior temporal cortex in short term and serial recognition memory tasks.Experimental Brain Research,65, 614–622. Google Scholar
Bechara, A., Damasio, H., Tranel, D., &Anderson, S. W. (1998). Dissociation of working memory from decision making within the human prefrontal cortex.Journal of Neuroscience,18, 428–437. PubMed Google Scholar
Bench, C. J., Frith, C. D., Grasby, P. M., Friston, K. J., Paulesu, E., Frackowiak, R. S. J., &Dolan, R. J. (1993). Investigations of the functional anatomy of attention using the Stroop test.Neuropsychologia,31, 907–922. PubMed Google Scholar
Benedict, R. H. B., Lockwood, A. H., Shucard, J. L., Shucard, D.W., Wack, D., &Murphy, B. W. (1998). Functional neuroimaging of attention in the auditory modality.NeuroReport,9, 121–126. PubMed Google Scholar
Benton, A. L. (1968). Differential behavioral effects in frontal lobe disease.Neuropsychologia,6, 53–60. Google Scholar
Berg, E. A. (1948). A simple objective technique for measuring flexibility in thinking.Journal of General Psychology,39, 15–22. PubMed Google Scholar
Berman, K. F., Ostrem, J. L., Randolph, C., Gold, J., Goldberg, T.E., Coppola, R., Carson, R. E., Herscovitch, P., &Weinberger, D. R. (1995). Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: A positron emission tomography study.Neuropsychologia,33, 1027–1046. PubMed Google Scholar
Berman, K. F., Zec, R. F., &Weinberger, D. R. (1986). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia: II. Role of neuroleptic treatment, attention, and mental effort.Archives of General Psychiatry,43, 126–135. PubMed Google Scholar
Bleckley, M. K. (2001).Individual differences in visual attention and working memory capacity: Further distinctions between where and what. Unpublished doctoral dissertation, Georgia Institute of Technology.
Bolter, J. F., Long, C. J., &Wagner, M. (1983). The utility of the Thurstone Word Fluency Test in identifying cortical damage.Clinical Neuropsychology,5, 77–82. Google Scholar
Boone, K. B. (1999). Neuropsychological assessment of executive functions: Impact of age, education, gender, intellectual level, and vas cular status on executive test scores. In B. L. Miller & J. L. Cummings (Eds.),The human frontal lobes: Functions and disorders (pp. 247–260). New York: Guilford. Google Scholar
Borkowski, J. G. (1965). Interference effects in short-term memory as a function of level of intelligence.American Journal of Mental Deficiency,70, 458–465. PubMed Google Scholar
Boussaoud, D., &Wise, S. P. (1993). Primate frontal cortex: Neuronal activity following attentional versus intentional cues.Experimental Brain Research,95, 15–27. Google Scholar
Braver, T. S., Barch, D. M., Kelley, W. M., Buckner, R. L., Cohen, N. J., Miezin, F. M., Snyder, A. Z., Ollinger, J. M., Akbudak, E., Conturo, T. E., &Petersen, S. E. (2001). Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks.NeuroImage,14, 48–59. PubMed Google Scholar
Braver, T. S., &Cohen, J. D. (2000). On the control of control: The role of dopamine in regulating prefrontal function and working memory. In S. Monsell & J. Driver (Eds.),Attention and performance XVIII: Control of cognitive processes (pp. 713–737). Cambridge, MA: MIT Press. Google Scholar
Braver, T. S., Cohen, J. D., Nyström, L. E., Jonides, J., Smith, E. E., &Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory.NeuroImage,5, 49–62. PubMed Google Scholar
Brodmann, K. (1925).Vergleichende Lokalisationslehre der Grosshirnrinde. Leipzig, Germany: Barth. Google Scholar
Butters, M. A., Kaszniak, A. W., Glisky, E. L., Eslinger, P. J., &Schacter, D. L. (1994). Recency discrimination deficits in frontal lobe patients.Neuropsychology,8, 343–353. Google Scholar
Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., Goldberg, T. E., &Weinberger, D. R. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI.Cerebral Cortex,9, 20–26. PubMed Google Scholar
Carpenter, P. A., Just, M. A., &Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices test.Psychological Review,97, 404–431. PubMed Google Scholar
Carroll, J. B. (1993).Human cognitive abilities: A survey of factoranalytic studies. New York: Cambridge University Press. Google Scholar
Carroll, J. B. (1996). A three-striatum theory of intelligence: Spearman’s contribution. In I. Dennis & P. Tapsfield (Eds.),Human abilities: Their nature and measurement (pp. 1–17). Mahwah, NJ: Erlbaum. Google Scholar
Casey, B. J., Cohen, J. D., O’Craven, K., Davidson, R. J., Irwin, W., Nelson, C. A., Noll, D. C., Hu, X., Lowe, M. J., Rosen, B. R., Truwitt, C. L., &Turski, P. A. (1998). Reproducibility of fMRI results across four institutions using a spatial working memory task.NeuroImage,8, 249–261. PubMed Google Scholar
Chao, L. L., &Knight, R. T. (1998). Contribution of human prefrontal cortex to delay performance.Journal of Cognitive Neuroscience,10, 167–177. PubMed Google Scholar
Chorover, S. L., &Cole, M. (1966). Delayed alternation performance in patients with cerebral lesions.Neuropsychologia,4, 1–7. Google Scholar
Chow, T. W., &Cummings, J. L. (1999). Frontal-subcortical circuits. In B. L. Miller & J. L. Cummings (Eds.),The human frontal lobes: Functions and disorders (pp. 3–26). New York: Guilford. Google Scholar
Cicerone, K. D., Lazar, R. M., &Shapiro, W. R. (1983). Effects of frontal lobe lesions on hypothesis sampling during concept formation.Neuropsychologia,21, 513–524. PubMed Google Scholar
Cohen, J. D., Braver, T. S., &O’Reilly, R. C. (1996). A computational approach to prefrontal cortex, cognitive control and schizophrenia: Recent developments and current challenges.Philosophical Transactions of the Royal Society of London: Series B,351, 1515–1527. Google Scholar
Cohen, J. D., Braver, T. S., &O’Reilly, R. C. (1998). A computational approach to prefrontal cortex, cognitive control and schizophrenia: Recent developments and current challenges. In A. C. Roberts, T. W. Robbins, & L. Weiskrantz (Eds.),The prefrontal cortex: Executive and cognitive functions (pp. 195–220). Oxford: Oxford University Press. Google Scholar
Cohen, J. D., Dunbar, K., &McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect.Psychological Review,97, 332–361. PubMed Google Scholar
Cohen, J. D., Forman, S. D., Braver, T. S., Casey, B. J., Servan-Schreiber, D., &Noll, D. C. (1994). Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI.Human Brain Mapping,1, 293–304. Google Scholar
Cohen, J. D., Perlstein, W. M., Braver, T. S., Nyström, L. E., Noll, D. C., Jonides, J., &Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task.Nature,386, 604–608. PubMed Google Scholar
Cohen, J. D., &Servan-Schreiber, D. (1992). Context, cortex, and dopamine: A connectionist approach to behavior and biology in schizophrenia.Psychological Review,99, 45–77. PubMed Google Scholar
Constantinidis, C., &Steinmetz, M. A. (1996). Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task.Journal of Neurophysiology,76, 1352–1355. PubMed Google Scholar
Conway, A. R. A., Cowan, N., &Bunting, M. F. (2001). The cocktail party phenomenon revisited: The importance of working memory capacity.Psychonomic Bulletin & Review,8, 331–335. Google Scholar
Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D., &Minkoff, S. (2002). A latent variable analysis of working memory capacity, short term memory capacity, processing speed, and general fluid intelligence.Intelligence,30, 163–183. Google Scholar
Conway, A. R. A., &Engle, R. W. (1994). Working memory and retrieval: A resource-dependent inhibition model.Journal of Experimental Psychology: General,123, 354–373. Google Scholar
Conway, A. R. A., &Engle, R. W. (1996). Individual differences in working memory capacity: More evidence for a general capacity theory.Memory,4, 577–590. PubMed Google Scholar
Conway, A. R. A., &Kane, M. J. (2001). Capacity, control and conflict: An individual differences perspective on attentional capture. In C. Folk & B. Gibson (Eds.),Attraction, distraction and action: Multiple perspectives on attention capture (pp. 349–372). Amsterdam: Elsevier. Google Scholar
Conway, A. R. A., Tuholski, S. W., Shisler, R. J., &Engle, R. W. (1999). The effect of memory load on negative priming: An individual differences investigation.Memory & Cognition,27, 1042–1050. Google Scholar
Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., &Peterson, S. E. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography.Journal of Neuroscience,11, 2383–2402. PubMed Google Scholar
Corcoran, R., &Upton, D. (1993). A role for the hippocampus in card sorting?Cortex,29, 293–304. PubMed Google Scholar
Coslett, H. B., Bowers, D., Verfaellie, M., &Heilman, K. M. (1991). Frontal verbal amnesia: Phonological amnesia.Archives of Neurology,48, 949–955. PubMed Google Scholar
Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G., &Haxby, J. V. (1998). An area specialized for spatial working memory in human frontal cortex.Science,279, 1347–1351. PubMed Google Scholar
Courtney, S. M., Ungerleider, L. G., Keil, K., &Haxby, J. V. (1996). Object and spatial working memory activate separate neural systems in human cortex.Cerebral Cortex,6, 39–49. PubMed Google Scholar
Courtney, S. M., Ungerleider, L. G., Keil, K., &Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory.Nature,386, 608–611. PubMed Google Scholar
Cowan, N. (1995).Attention and memory: An integrated framework. Oxford: Oxford University Press. Google Scholar
Cowan, N. (1999). An embedded-process model of working memory. In A. Miyake & P. Shah (Eds.),Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). New York: Cambridge University Press. Google Scholar
Crawford, J. D., &Stankov, L. (1983). Fluid and crystallized intelligence and primacy/recency components of short-term memory.Intelligence,7, 227–252. Google Scholar
Cuenod, C. A., Bookheimer, S. Y., Hertz-Pannier, L., Zeffiro, T.A., Theodore, W. H., &Le Bihan, D. (1995). Functional MRI during word generation, using conventional equipment: A potential tool for language localization in the clinical environment.Neurology,45, 1821–1827. PubMed Google Scholar
Damasio, H. C. (1991). Neuroanatomy of frontal lobe in vivo: A comment on methodology. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.),Frontal lobe function and dysfunction (pp. 92–121). Oxford: Oxford University Press. Google Scholar
D’Amato, M. R., &O’Neill, W. (1971). Effect of delay-interval illumination on matching behavior in the capuchin monkey.Journal of the Experimental Analysis of Behavior,15, 327–333. PubMed Google Scholar
Daneman, M., &Carpenter, P. A. (1980).Individual differences in working memory and reading.Journal of Verbal Learning & Verbal Behavior,19, 450–466. Google Scholar
Daneman, M., &Merikle, P. M. (1996). Working memory and language comprehension: A meta-analysis.Psychonomic Bulletin & Review,3, 422–433. Google Scholar
Daneman, M., &Tardif, T. (1987). Working memory and reading skill reexamined. In M. Coltheart (Ed.),Attention and performance XII: The psychology of reading (pp. 491–508). Hove, U.K.: Erlbaum. Google Scholar
Dehaene, S., &Changeux, J. P. (1989). A simple model of prefrontal cortex function in delayed-response tasks.Journal of Cognitive Neuroscience,1, 244–261. Google Scholar
De Jong, R. D., Berendsen, E., &Cools, R. (1999). Goal neglect and inhibitory limitations: Dissociable causes of interference effects in conflict situations.Acta Psychologica,101, 379–394. PubMed Google Scholar
Delis, D. C., Squire, L. R., Bihrle, A., &Massman, P. (1992). Componential analysis of problem-solving ability: Performance of patients with frontal lobe damage and amnesic patients on a new sorting test.Neuropsychologia,30, 683–697. PubMed Google Scholar
Dempster, F. N. (1991). Inhibitory processes: A neglected dimension in intelligence.Intelligence,15, 157–173. Google Scholar
Dempster, F. N. (1992). The rise and fall of the inhibitory mechanism: Toward a unified theory of cognitive development and aging.Developmental Review,12, 45–75. Google Scholar
Dempster, F. N., &Corkill, A. J. (1999). Individual differences in susceptibility to interference and general cognitive ability.Acta Psychologica,101, 395–416. Google Scholar
Desimone, R., &Duncan, J. (1995). Neural mechanisms of selective visual attention.Annual Review of Neuroscience,18, 193–222. PubMed Google Scholar
D’Esposito, M., Aguirre, G. K., Zarahn, E. K., Ballard, D., Shin, R. K., &Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory.Cognitive Brain Research,7, 1–13. PubMed Google Scholar
D’Esposito, M., Ballard, D., Aguirre, G. K., &Zarahn, E. (1998). Human prefrontal cortex is not specific for working memory: A functional MRI study.NeuroImage,8, 274–282. PubMed Google Scholar
D’Esposito, M., Ballard, D., Zarahn, E., &Aguirre, G. K. (2000). The role of prefrontal cortex in sensory memory and motor preparation: An event-related fMRI study.NeuroImage,11, 400–408. PubMed Google Scholar
D’Esposito, M., Detre, J. A., Alsop, D. C., Shin, R. K., Atlas, S., &Grossman, M. (1995). The neural basis of the central executive system of working memory.Nature,378, 279–281. PubMed Google Scholar
D’Esposito, M., Postle, B. R., Ballard, D., &Lease, J. (1999). Maintenance versus manipulation of information held in working memory: An event-related fMRI study.Brain & Cognition,41, 66–86. Google Scholar
D’Esposito, M., Postle, B. R., Jonides, J., &Smith, E. E. (1999). The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI.Proceedings of the National Academy of Sciences,96, 7514–7519. Google Scholar
Diamond, A. (1990). Developmental time course in human infants and infant monkeys, and the neural bases of, inhibitory control of reaching. In A. Diamond (Ed.),The development and neural bases of higher cognitive functions (Annals of the New York Academy of Sciences, Vol. 608, pp. 637–676). New York: New York Academy of Sciences. Google Scholar
Diamond, A. (1991). Frontal lobe involvement in cognitive changes during the first year of life. In K. R. Gibson & A. C. Peterson (Eds.),Brain maturation and cognitive development: Comparative and cross-cultural perspectives (pp. 127–180). New York: de Gruyter. Google Scholar
Dias, R., Robbins, T. W., &Roberts, A. C. (1996a). Dissociation in prefrontal cortex of affective and attentional shifts.Nature,380, 69–72. PubMed Google Scholar
Dias, R., Robbins, T. W., &Roberts, A. C. (1996b). Primate analogue of the Wisconsin Card Sorting Test: Effects of excitotoxic lesions of the prefrontal cortex in the marmoset.Behavioral Neuroscience,110, 872–886. PubMed Google Scholar
Dias, R., Robbins, T. W., &Roberts, A. C. (1997). Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: Restriction to novel situations and independence from “on-line” processing.Journal of Neuroscience,17, 9285–9297. PubMed Google Scholar
di Pellegrino, G., &Wise, S. P. (1993a). Effects of attention on visuomotor activity in the premotor and prefrontal cortex of a primate.Somatosensory & Motor Research,10, 245–262. Google Scholar
di Pellegrino, G., &Wise, S. P. (1993b). Visuospatial versus visuomotor activity in the premotor and prefrontal cortex of a primate.Journal of Neuroscience,13, 1227–1243. PubMed Google Scholar
Diwadkar, V. A., Carpenter, P. A., &Just, M. A. (2000). Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI.NeuroImage,12, 85–99. PubMed Google Scholar
Dolan, R. J., &Fletcher, P. C. (1997). Dissociating prefrontal and hippocampal function in episodic memory encoding.Nature,388, 582–585. PubMed Google Scholar
Dove, A., Pollmann, S., Schubert, T., Wiggins, C. J., &von Cramon, D. Y. (2000). Prefrontal cortex activation in task switching: An event-related fMRI study.Cognitive Brain Research,9, 103–109. PubMed Google Scholar
Drewe, E. A. (1974). The effect of type and area of brain lesion on Wisconsin Card Sorting Test performance.Cortex,10, 159–170. PubMed Google Scholar
Dubois, B., Levy, R., Verin, M., Teixeira, C., Agid, Y., &Pillon, B. (1995). Experimental approach to prefrontal functions in humans.Annals of the New York Academy of Sciences,769, 41–60. PubMed Google Scholar
Dunbar, K., &Sussman, D. (1995). Toward a cognitive account of frontal lobe function: Simulating frontal lobe deficits in normal subjects. In J. Grafman, K. J. Holyoak, & F. Butler (Eds.),Structure and functions of the human prefrontal cortex (Annals of the New York Academy of Sciences, Vol. 769, pp. 289–304). New York: New York Academy of Sciences. Google Scholar
Duncan, J. (1990). Goal weighting and the choice of behavior in a complex world.Ergonomics,33, 1265–1279. Google Scholar
Duncan, J. (1993). Selection of input and goal in the control of behavior. In A. Baddeley & L. Weiskrantz (Eds.),Attention: Selection, awareness, and control. A tribute to Donald Broadbent (pp. 53–71). Oxford: Oxford University Press, Clarendon Press. Google Scholar
Duncan, J. (1995). Attention, intelligence, and the frontal lobes. In M. S. Gazzaniga (Ed.),The cognitive neurosciences (pp. 721–733). Cambridge, MA: MIT Press. Google Scholar
Duncan, J., Burgess, P., &Emslie, H. (1995). Fluid intelligence after frontal lobe lesions.Neuropsychologia,33, 261–268. PubMed Google Scholar
Duncan, J., Emslie, H., Williams, P., Johnson, R., &Freer, C. (1996). Intelligence and the frontal lobe: The organization of goal-directed behavior.Cognitive Psychology,30, 257–303. PubMed Google Scholar
Duncan, J., Johnson, R., Swales, M., &Freer, C. (1997). Frontal lobe deficits after head injury: Unity and diversity of function.Cognitive Neuropsychology,14, 713–741. Google Scholar
Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed,A., Newell, F. N., &Emslie, H. (2000). A neural basis for general intelligence.Science,289, 457–460. PubMed Google Scholar
Dupont, P., Orban, G. A., Vogels, R., Bormans, G., Nuyts, J., Schiepers, C., De Roo, M., &Mortelmans, L. (1993). Different perceptual tasks performed with the same visual stimulus attribute activate different regions of the human brain: A positron emission tomography study.Proceedings of the National Academy of Sciences,90, 10927–10931. Google Scholar
Ekstrom, R. B., French, J. W., Harman, M. H., &Dermen, D. (1976).Manual for kit of factor-referenced cognitive tests. Princeton, NJ: Educational Testing Service. Google Scholar
Elfgren, C. I., &Risberg, J. (1998). Lateralized frontal blood flow increases during fluency tasks: Influence of cognitive strategy.Neuropsychologia,36, 505–512. PubMed Google Scholar
Engle, R. W. (1996). Working memory and retrieval: An inhibitionresource approach. In J. T. E. Richardson, R. W. Engle, L. Hasher, R. H. Logie, E. R. Stoltzfus, & R. T. Zacks (Eds.),Working memory and human cognition (pp. 89–119). New York: Oxford University Press. Google Scholar
Engle, R. W. (2001). What is working memory capacity? In H. L. Roediger III, J. S. Nairne, I. Neath, & A. M. Surprenant (Eds.),The nature of remembering: Essays in honor of Robert G. Crowder (pp. 297–314). Washington, DC: American Psychological Association. Google Scholar
Engle, R. W. (2002). Working memory capacity as executive attention.Current Directions in Psychological Science,11, 19–23. Google Scholar
Engle, R. W., Cantor, J., &Carullo, J. J. (1992). Individual differences in working memory and comprehension: A test of four hypotheses.Journal of Experimental Psychology: Learning, Memory, & Cognition,18, 972–992. Google Scholar
Engle, R. W., Kane, M. J., &Tuholski, S. W. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence and functions of the prefrontal cortex. In A. Miyake & P. Shah (Eds.),Models of working memory: Mechanisms of active maintenance and executive control (pp. 102–134). New York: Cambridge University Press. Google Scholar
Engle, R. W., Nations, J. K., &Cantor, J. (1990). Is “working memory capacity” just another name for word knowledge?Journal of Educational Psychology,82, 799–804. Google Scholar
Engle, R. W., &Oransky, N. (1999). The evolution from short-term to working memory: Multi-store to dynamic models of temporary storage. In R. J. Sternberg (Ed.),The concept of cognition (pp. 515–555). Cambridge, MA: MIT Press. Google Scholar
Engle, R. W., Tuholski, S. W., Laughlin, J. E., &Conway, A. R. A. (1999). Working memory, short-term memory and general fluid intelligence: A latent variable approach.Journal of Experimental Psychology: General,128, 309–331. Google Scholar
Erickson, R. P. (1974). Parallel “population” neural coding in feature extraction. In F. O. Schmitt & F. G. Worden (Eds.),The neurosciences: Third study program (pp. 155–169). Cambridge, MA: MIT Press. Google Scholar
Eriksen, B. A., &Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task.Perception & Psychophysics,16, 143–149. Google Scholar
Eslinger, P. J., &Damasio, A. R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation: Patient EVR.Neurology,35, 1731–1741. PubMed Google Scholar
Esposito, G., Kirkby, B. S., Van Horn, J. D., Ellmore, T. M., &Berman, K. F. (1999). Context-dependent, neural system-specif ic neurophysiological concomitants of ageing: Mapping PET correlates during cognitive activation.Brain,122, 963–979. PubMed Google Scholar
Everling, S., &Fischer, B. (1998). The antisaccade: A review of basic research and clinical findings.Neuropsychologia,36, 885–899. PubMed Google Scholar
Ferreira, C. T., Verin, M., Pillon, B., Levy, R., Dubois, B., &Agid,Y. (1998). Spatio-temporal working memory and frontal lesions in man.Cortex,34, 83–98. PubMed Google Scholar
Ferrier, D. (1886).The functions of the brain (2nd ed.). London: Smith, Elder. Google Scholar
Fiez, J. A., Raife, E. A., Balota, D. A., Schwarz, J. P., Raichle, M.E., &Peterson, S. E. (1996). A positron emission tomography study of the short-term maintenance of verbal information.Journal of Neuroscience,16, 808–822. PubMed Google Scholar
Fletcher, P. C., Shallice, T., &Dolan, R. J. (1998). The functional roles of prefrontal cortex in episodic memory.Brain,121, 1239–1248. PubMed Google Scholar
Freedman, M., &Cermak, L. S. (1986). Semantic encoding deficits in frontal lobe disease and amnesia.Brain & Cognition,5, 108–114. Google Scholar
Freedman, M., &Oscar-Berman, M. (1986). Bilateral frontal lobe disease and selective delayed response deficits in humans.Behavioral Neuroscience,100, 337–342. PubMed Google Scholar
Friedman, H. R., &Goldman-Rakic, P. S. (1988). Activation of the hippocampus and dentate gyrus by working memory: A 2-deoxyglucose study of behaving rhesus monkeys.Journal of Neuroscience,8, 4693–4706. PubMed Google Scholar
Frisk, V., &Milner, B. (1990). The relationship of working memory to the immediate recall of stories following unilateral temporal or frontal lobectomy. Neuropsychologia, 28, 121–135. PubMed Google Scholar
Frith, C. D., Friston, K. J., Liddle, P. F., &Frackowiak, R. S. J. (1991). A PET study of word finding.Neuropsychologia,29, 1137–1148. PubMed Google Scholar
Fukushima, J., Fukushima, K., Miyasaka, K., &Yamashita, I. (1994). Voluntary control of saccadic eye movement in patients with frontal cortical lesions and Parkinsonian patients in comparison with that in schizophrenics.Biological Psychiatry,36, 21–30. PubMed Google Scholar
Funahashi, S., Bruce, C. J., &Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex.Journal of Neurophysiology,61, 331–349. PubMed Google Scholar
Funahashi, S., Bruce, C. J., &Goldman-Rakic, P. S. (1990). Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms.Journal of Neurophysiology,63, 814–831. PubMed Google Scholar
Funahashi, S., Bruce, C. J., &Goldman-Rakic, P. S. (1993). Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic “scotomas.”Journal of Neuroscience,13, 1479–1497. PubMed Google Scholar
Funahashi, S., &Kubota, K. (1994). Working memory and prefrontal cortex.Neuroscience Research,21, 1–11. PubMed Google Scholar
Fuster, J. M. (1973). Unit activity in prefrontal cortex during delayedresponse performance: Neuronal correlates of transient memory.Journal of Neurophysiology,36, 61–78. PubMed Google Scholar
Fuster, J. M. (1980).The prefrontal cortex. New York: Raven. Google Scholar
Fuster, J. M. (1988). The prefrontal cortex:Anatomy, physiology, and neuropsychology of the frontal lobe. New York: Raven. Google Scholar
Fuster, J. M. (1989).The prefrontal cortex (2nd ed.). New York: Raven. Google Scholar
Fuster, J. M. (1996, July).Emerging solutions to the problem of the frontal lobe. Paper presented at the James S. McDonnell Foundation Summer Institute in Cognitive Neuroscience, Hanover, NH.
Fuster, J. M., &Alexander, G. E. (1973). Firing changes in cells of the nucleus medialis dorsalis associated with delayed response behavior.Brain Research,61, 79–91. PubMed Google Scholar
Fuster, J. M., &Bauer, R. H. (1974). Visual short-term memory deficit from hypothermia of frontal cortex.Brain Research,81, 393–400. PubMed Google Scholar
Fuster, J. M., Bauer, R. H., &Jervey, J. P. (1985). Functional interactions between inferotemporal and prefrontal cortex in a cognitive task.Brain Research,330, 299–307. PubMed Google Scholar
Fuster, J. M., Bodner, M., &Kroger, J. (2000). Cross-modal and cross-temporal association in neurons of frontal cortex.Nature,405, 347–351. PubMed Google Scholar
Goel, V., Buchel, C., Frith, C., &Dolan, R. J. (2000). Dissociation of mechanisms underlying syllogistic reasoning.NeuroImage,12, 504–514. PubMed Google Scholar
Goel, V., Gold, B., Kapur, S., &Houle, S. (1997). The seats of reason? An imaging study of deductive and inductive reasoning.NeuroReport,8, 1305–1310. PubMed Google Scholar
Goel, V., Gold, B., Kapur, S., &Houle, S. (1998). Neuroanatomical correlates of human reasoning.Journal of Cognitive Neuroscience,10, 293–302. PubMed Google Scholar
Gold, J. M., Berman, K. F., Randolph, C., Goldberg, T. E., &Weinberger, D. R. (1996). PET validation of a novel prefrontal task: Delayed response alternation.Neuropsychology,10, 3–10. Google Scholar
Goldberg, T. E., Berman, K. F., Fleming, K., Ostrem, J., Van Horn, J. D., Esposito, G., Mattay, V. S., Gold, J. M., &Weinberger, D.R. (1998). Uncoupling cognitive workload and prefrontal cortical physiology: A PET rCBF study.NeuroImage,7, 296–303. PubMed Google Scholar
Goldberg, T. E., Berman, K. F., Randolph, C., Gold, J. M., &Weinberger, D. R. (1996). Isolating the mnemonic component in spatial delayed response: A controlled PET O15-labeled water regional cerebral blood flow study in normal humans.NeuroImage,3, 69–78. PubMed Google Scholar
Goldman, P. S., &Rosvold, H. E. (1970). Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey.Experimental Neurology,27, 291–304. PubMed Google Scholar
Goldman, P. S., Rosvold, H. E., Vest, B., &Galkin, T. W. (1971). Analysis of the delayed-alternation deficit produced by dorsolateral prefrontal lesions in the rhesus monkey.Journal of Comparative & Physiological Psychology,77, 212–220. Google Scholar
Goldman-Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In F. Plum (Ed.),Handbook of physiology: The nervous system (Vol. 5, pp. 373–417). Bethesda, MD: American Physiological Society. Google Scholar
Goldman-Rakic, P. S. (1995). Cellular basis of working memory.Neuron,14, 477–485. PubMed Google Scholar
Goldman-Rakic, P. S. (2000). Localization of function all over again.NeuroImage,11, 451–457. PubMed Google Scholar
Goldstein, K. (1936). The significance of the frontal lobes for mental performance.Journal of Neurology & Psychopathology,17, 27–40. Google Scholar
Goldstein, K. (1944). The mental changes due to frontal lobe damage.Journal of Psychology,17, 187–208. Google Scholar
Gopher, D., Armony, L., &Greenshpan, Y. (2000). Switching tasks and attention policies.Journal of Experimental Psychology: General,129, 308–339. Google Scholar
Grady, C. L., McIntosh, A. R., Bookstein, F., Horwitz, B., Rapoport, S. I., &Haxby, J. V. (1998). Age-related changes in regional cerebral blood flow during working memory for faces.NeuroImage,8, 409–425. PubMed Google Scholar
Grafman, J., Jonas, B., &Salazar, A. (1990). Wisconsin Card Sorting Test performance based on location and size of neuroanatomical lesion in Vietnam veterans with penetrating head injury.Perceptual & Motor Skills,71, 1120–1122. Google Scholar
Grant, A. D., &Berg, E. A. (1948). A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigltype card-sorting problem.Journal of Experimental Psychology,38, 404–411. PubMed Google Scholar
Grueninger, W. E., &Pribram, K. H. (1969). Effects of spatial and nonspatial distractors on performance latency of monkeys with frontal lesions.Journal of Comparative & Physiological Psychology,68, 203–209. Google Scholar
Guitton, D., Buchtel, H. A., &Douglas, R. M. (1985). Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades.Experimental Brain Research,58, 455–472. Google Scholar
Halstead, W. C. (1947).Brain and intelligence: A quantitative study of the frontal lobes. Chicago: University of Chicago Press. Google Scholar
Harlow, H. F., &Dagnon, J. (1943). Problem solution by monkeys following bilateral removal of the prefrontal areas: I. The discrimination and discrimination-reversal problems.Journal of Experimental Psychology,32, 351–356. Google Scholar
Harlow, H. F., Davis, R. T., Settlage, P. H., &Meyer, D. R. (1952). Analysis of frontal and posterior association syndromes in braindamaged monkeys.Journal of Comparative & Physiological Psychology,45, 419–429. Google Scholar
Harlow, H. F., &Settlage, P. H. (1948). Effect of extirpation of frontal areas upon learning performance of monkeys.Research Publications for Research in Nervous & Mental Disease,27, 446–459. Google Scholar
Harlow, J. M. (1848). Passage of an iron bar through the head.Publications of the Massachusetts Medical Society,2, 327–347. Google Scholar
Harper, D. N., &White, K. G. (1997). Retroactive interference and rate of forgetting in delayed matching-to-sample performance.Animal Learning & Behavior,25, 158–164. Google Scholar
Hartley, A. A., Speer, N. K., Jonides, J., Reuter-Lorenz, P. A., &Smith, E. E. (2001). Is the dissociability of working memory systems for name identity, visual-object identity, and spatial location maintained in old age?Neuropsychology,15, 3–17. PubMed Google Scholar
Haxby, J. V., Petit, L., Ungerleider, L. G., &Courtney, S. M. (2000). Distinguishing the functional roles of multiple regions in distributed neural systems for visual working memory.NeuroImage,11, 98–110. Google Scholar
Haxby, J. V., Ungerleider, L. G., Horwitz, B., Rapoport, S. I., &Grady, C. L. (1995). Hemispheric differences in neural systems for face working memory: A PET rCBF study.Human Brain Mapping,3, 68–82. Google Scholar
Heaton, R. (1981).A manual for the Wisconsin Card Sorting Test. Odessa, FL: Psychological Assessment Resources. Google Scholar
Hebb, D. O. (1939). Intelligence in man after large removals of cerebral tissue: Report of four left frontal lobe cases.Journal of General Psychology,21, 73–87. Google Scholar
Hebb, D. O. (1945). Man’s frontal lobes: A critical review.Archives of Neurology & Psychiatry,54, 10–24. Google Scholar
Hebb, D. O., &Penfield, W. (1940). Human behavior after extensive bilateral removal from the frontal lobes.Archives of Neurology & Psychiatry,44, 421–438. Google Scholar
Honey, G. D., Bullmore, E. T., &Sharma, T. (2000). Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation.NeuroImage,12, 495–503. PubMed Google Scholar
Iidaka, T., Anderson, N. D., Kapur, S., Cabeza, R., &Craik, F. I. M. (2000). The effect of divided attention on encoding and retrieval in episodic memory revealed by Positron Emission Tomography.Journal of Cognitive Neuroscience,12, 267–280. PubMed Google Scholar
Institute for Personality and Ability Testing (1973).Measuring intelligence with culture fair tests. Champaign, IL: Author. Google Scholar
Jacobsen, C. F. (1935). Functions of the frontal association area in primates.Archives of Neurology & Psychiatry,33, 558–569. Google Scholar
Jacobsen, C. F. (1936). Studies of cerebral function in primates: I. The functions of the frontal association area in monkeys.Comparative Psychology Monographs,13, 1–68. Google Scholar
Janowsky, J. S., Shimamura, A. P., Kritchevsky, M., &Squire, L.R. (1989). Cognitive impairment following frontal lobe damage and its relevance to human amnesia.Behavioral Neuroscience,103, 548–560. PubMed Google Scholar
Janowsky, J. S., Shimamura, A. P., &Squire, L. R. (1989). Source memory impairment in patients with frontal lobe lesions.Neuropsychologia,27, 1043–1056. PubMed Google Scholar
Jansma, J. M., Ramsey, N. F., Coppola, R., &Kahn, R. S. (2000). Specific versus nonspecific brain activity in a parametric n-back task.NeuroImage,12, 688–697. PubMed Google Scholar
Jersild, A. T. (1927). Mental set and shift.Archives of Psychology [Whole No. 89].
Jetter, W., Poser, U., Freeman, R. B., Jr., &Markowitsch, H. J. (1986). A verbal long term memory deficit in frontal lobe damaged patients.Cortex,22, 229–242. PubMed Google Scholar
Jha, A. P., &McCarthy, G. (2000). The influence of memory load upon delay-interval activity in a working-memory task: An event-related functional MRI study.Journal of Cognitive Neuroscience,12(Suppl.), 90–105. PubMed Google Scholar
Joanette, Y., &Goulet, P. (1986). Criterion-specific reduction of verbal fluency in right brain-damaged right-handers.Neuropsychologia,24, 875–879. PubMed Google Scholar
Johannsen, P., Jakobsen, J., Bruhn, P., Hansen, S. B., Gee, A., Stødkilde-Jørgensen, H., &Gjedde, A. (1997). Cortical sites of sustained and divided attention in normal elderly humans.Neuro-Image,6, 145–155. PubMed Google Scholar
Jones-Gotman, M., &Milner, B. (1977). Design fluency: The invention of nonsense drawings after focal cortical lesions.Neuropsychologia,15, 653–674. PubMed Google Scholar
Jonides, J., Marshuetz, C., Smith, E. E., Reuter-Lorenz, P. A., &Koeppe, R. A. (2000). Age differences in behavior and PET activation reveal differences in interference resolution in verbal working memory.Journal of Cognitive Neuroscience,12, 188–196. PubMed Google Scholar
Jonides, J., Reuter-Lorenz, P. A., Smith, E. E., Awh, E., Barnes, L. L., Drain, M., Glass, J., Lauber, E. J., Patalano, A. L., &Schumacher, E. H. (1996). Verbal and spatial working memory in humans.Psychology of Learning & Motivation,35, 43–88. Google Scholar
Jonides, J., Schumacher, E. H., Smith, E. E., Lauber, E. J., Awh, E., Minoshima, S., &Koeppe, R. A. (1997). Verbal working memory load affects regional brain activation as measured by PET.Journal of Cognitive Neuroscience,9, 462–475. Google Scholar
Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., &Mintun, M. A. (1993). Spatial working memory in humans as revealed by PET.Nature,363, 623–625. PubMed Google Scholar
Jonides, J., Smith, E. E., Marshuetz, C., &Koeppe, R. A. (1998). Inhibition in verbal-working memory revealed by brain activation.Proceedings of the National Academy of Sciences,95, 8410–8413. Google Scholar
Jurden, F. H. (1995). Individual differences in working memory and complex cognition.Journal of Educational Psychology,87, 93–102. Google Scholar
Kahneman, D., Ben-Ishai, R., &Lotan, M. (1973). Relation of a test of attention to road accidents.Journal of Applied Psychology,58, 113–115. Google Scholar
Kail, R., &Hall, L. K. (2001). Distinguishing short-term memory from working memory.Memory & Cognition,29, 1–9. Google Scholar
Kane, M. J., Bleckley, M. K., Conway, A. R. A., &Engle, R. W. (2001). A controlled-attention view of working-memory capacity.Journal of Experimental Psychology: General,130, 169–183. Google Scholar
Kane, M. J., &Engle, R. W. (2000). Working memory capacity, proactive interference, and divided attention: Limits on long-term memory retrieval.Journal of Experimental Psychology: Learning, Memory, & Cognition,26, 333–358. Google Scholar
Kane, M. J., & Engle, R. W. (in press). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference.Journal of Experimental Psychology: General.
Kane, M. J., Peterman, M., Bleckley, M. K., & Engle, R. W. (2002).The attentional and intellectual demands of verbal and figural fluency: A dual-task approach. Unpublished manuscript.
Kane, M. J., Sanchez, A., & Engle, R. W. (1999, November).Working memory capacity, intelligence, and goal neglect in the Stroop task. Poster presented at the annual meeting of the Psychonomic Society, Los Angeles.
Kikuchi-Yorioka, Y., &Sawaguchi, T. (2000). Parallel visuospatial and audiospatial working memory processes in the monkey dorsolateral prefrontal cortex.Nature Neuroscience,3, 1075–1076. PubMed Google Scholar
Kimberg, D. Y., Aguirre, G. K., &D’Esposito, M. (2000). Modulation of task-related neural activity in task-switching: An fMRI study.Cognitive Brain Research,10, 189–196. PubMed Google Scholar
Kimberg, D. Y., D’Esposito, M., &Farah, J. (1997). Effects of bromocriptine on human subjects depend on working memory capacity.Cognitive Neuroscience,8, 3581–3585. Google Scholar
Kimberg, D. Y., &Farah, M. J. (1993). A unified account of cognitive impairments following frontal lobe damage: The role of working memory in complex, organized behavior.Journal of Experimental Psychology: General,4, 411–428. Google Scholar
Kindt, M., Bierman, D., &Brosschot, J. F. (1996). Stroop versus Stroop: Comparison of a card format and a single-trial format of the standard color-word Stroop task and the emotional Stroop task.Personality & Individual Differences,21, 653–661. Google Scholar
Kirchner, W. K. (1958). Age differences in short-term retention of rapidly changing information.Journal of Experimental Psychology,55, 352–358. PubMed Google Scholar
Klein, K., &Fiss, W. H. (1999). The reliability and stability of the Turner and Engle working memory task.Behavior Research Methods, Instruments, & Computers,31, 429–432. Google Scholar
Klingberg, T. (1998). Concurrent performance of two working memory tasks: Potential mechanisms of interference.Cerebral Cortex,8, 593–601. PubMed Google Scholar
Knight, R. T. (1991). Evoked potential studies of attention capacity in human frontal lobe lesions. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.),Frontal lobe function and dysfunction (pp. 139–153). Oxford: Oxford University Press. Google Scholar
Knight, R. T., &Grabowecky, M. (1995). Escape from linear time: Prefrontal cortex and conscious experience. In M. S. Gazzaniga (Ed.),The cognitive neurosciences (pp. 1357–1371). Cambridge, MA: MIT Press. Google Scholar
Knight, R. T., Hillyard, S. A., Woods, D. L., &Neville, S. J. (1981). The effects of frontal cortex lesions on event-related potentials during auditory selective attention.Electroencephalography & Clinical Neurophysiology,52, 571–582. Google Scholar
Knight, R. T., Scabini, D., &Woods, D. L. (1989). Prefrontal cortex gating of auditory transmission in humans.Brain Research,504, 338–342. PubMed Google Scholar
Knight, R. T., Staines, W. R., Swick, D., &Chao, L. L. (1999). Prefrontal cortex regulates inhibition and excitation in distributed neural networks.Acta Psychologica,101, 159–178. PubMed Google Scholar
Koch, K. W., &Fuster, J. M. (1989). Unit activity in monkey parietal cortex related to haptic perception and temporary memory.Experimental Brain Research,76, 292–306. Google Scholar
Kojima, S., &Goldman-Rakic, P. S. (1982). Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response.Brain Research,248, 43–49. PubMed Google Scholar
Kojima, S., &Goldman-Rakic, P. S. (1984). Functional analysis of spatially discriminative neurons in prefrontal cortex of rhesus monkey.Brain Research,291, 229–240. PubMed Google Scholar
Kubota, K., &Niki, H. (1971). Prefrontal cortical unit activity and delayed alternation performance in monkeys.Journal of Neurophysiology,34, 337–347. PubMed Google Scholar
Kubota, K., Tonoike, M., &Mikami, A. (1980). Neuronal activity in the monkey dorsolateral prefrontal cortex during a discrimination task with delay.Brain Research,183, 29–42. PubMed Google Scholar
Kyllonen, P. C. (1993). Aptitude testing inspired by information processing: A test of the four-sources model.Journal of General Psychology,120, 375–405. Google Scholar
Kyllonen, P. C. (1996). Is working memory capacity Spearman’s g? In I. Dennis & P. Tapsfield (Eds.),Human abilities: Their nature and measurement (pp. 49–75). Mahwah, NJ: Erlbaum. Google Scholar
Kyllonen, P. C., &Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity?!Intelligence,14, 389–433. Google Scholar
Laiacona, M., De Santis, A., Barbaratto, R., Basso, A., Spagnoli,D., &Capitani, E. (1989). Neuropsychological follow-up of patients operated for aneurysms of anterior communicating artery.Cortex,25, 261–273. PubMed Google Scholar
Larson, G. E., &Perry, Z. A. (1999). Visual capture and human error.Applied Cognitive Psychology,13, 227–236. Google Scholar
Larson, G. E., &Saccuzzo, D. P. (1989). Cognitive correlates of general intelligence: Toward a process theory of_g_.Intelligence,13, 5–31. Google Scholar
Law, D. J., Morrin, K. A., &Pellegrino, J. W. (1995). Training effects and working memory contributions to skill acquisition in a complex coordination task.Learning & Individual Differences,7, 207–234. Google Scholar
Lee, S. L., Wild, K., Hollnagel, C., &Grafman, J. (1999). Selective visual attention in patients with frontal lobe lesions or Parkinson’s disease.Neuropsychologia,37, 595–604. PubMed Google Scholar
Lehto, J. (1996). Are executive function tests dependent on working memory capacity?Quarterly Journal of Experimental Psychology,49A, 29–50. Google Scholar
Lezak, M. D. (1983). Neuropsychological assessment. New York: Oxford University Press. Google Scholar
Los, S. A. (1999). Identifying stimuli of different perceptual categories in pure and mixed blocks of trials: Evidence for stimulus-driven switch costs.Acta Psychologica,103, 173–205. PubMed Google Scholar
Luciana, M., Depue, R. A., Arbisi, P., &Leon, A. (1992). Facilitation of working memory in humans by a D2 dopamine receptor agonist.Journal of Cognitive Neuroscience,4, 58–68. Google Scholar
Luria, A. R. (1966). Higher cortical functions in man. New York: Basic Books. Google Scholar
Luria, A. R. (1971). Memory disturbances in local brain lesions.Neuropsychologia,9, 367–375. PubMed Google Scholar
Luria, A. R., Karpov, B. A., &Yarbuss, A. L. (1966). Disturbances of active visual perception with lesions of the frontal lobes.Cortex,2, 202–212. Google Scholar
Luria, A. R., Pribram, K. H., &Homskaya, E. D. (1964). An experimental analysis of the behavioral disturbance produced by a left frontal arachnoidal endothelioma (meningioma).Neuropsychologia,2, 257–280. Google Scholar
MacDonald, A. W., Cohen, J. D., Stenger, V. A., &Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control.Science,288, 1835–1838. PubMed Google Scholar
Mackworth, J. F. (1959). Paced memorizing in a continuous task.Journal of Experimental Psychology,58, 206–211. PubMed Google Scholar
MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review.Psychological Bulletin,109, 163–203. PubMed Google Scholar
MacLeod, C. M., &MacDonald, P. A. (2000). Interdimensional interference in the Stroop effect: Uncovering the cognitive and neural anatomy of attention.Trends in Cognitive Sciences,4, 383–391. PubMed Google Scholar
Malmo, R. B. (1942). Interference factors in delayed response in monkeys after removal of frontal lobes.Journal of Neurophysiology,5, 295–308. Google Scholar
Martinkauppi, S., Rämä, P., Aronen, H. J., Korvenoja, A., &Carlson, S. (2000). Working memory of auditory localization.Cerebral Cortex,10, 889–898. PubMed Google Scholar
Mayr, U., &Keele, S. W. (2000). Changing internal constraints on action: The role of backward inhibition.Journal of Experimental Psychology: General,129, 4–26. Google Scholar
McCarthy, G. (1995). Functional neuroimaging of memory.The Neuroscientist,1, 155–163. Google Scholar
McCarthy, G., Blamire, A. M., Puce, A., Nobre, A. C., Bloch, G., Hyder, F., Goldman-Rakic, P. S., &Shulman, R. G. (1994). Functional magnetic resonance imaging of human prefrontal cortex activation during a spatial working memory task.Proceedings of the National Academy of Sciences,91, 8690–8694. Google Scholar
McCarthy, G., Puce, A., Constable, R. T., Krystal, J. H., Gore, J. C., &Goldman-Rakic, P. S. (1996). Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI.Cerebral Cortex,6, 600–611. PubMed Google Scholar
McIntosh, A. R., Grady, C. L., Haxby, J. V., Ungerleider, L. G., &Horwitz, B. (1996). Changes in limbic and prefrontal functional interactions in a working memory task for faces.Cerebral Cortex,6, 571–584. PubMed Google Scholar
McKenna, F. P., Duncan, J., &Brown, I. D. (1986). Cognitive abilities and safety on the road: A re-examination of individual differences in dichotic listening and search for embedded figures.Ergonomics,29, 649–663. PubMed Google Scholar
Meiran, N. (1996). Reconfiguration of processing mode prior to task performance.Journal of Experimental Psychology: Learning, Memory, & Cognition,22, 1423–1442. Google Scholar
Mesulam, M. M. (1981). A cortical network for directed attention and unilateral neglect.Annals of Neurology,10, 309–325. PubMed Google Scholar
Metz, J. T., Yasillo, N. J., &Cooper, M. (1987). Relationship between cognitive functioning and cerebral metabolism.Journal of Cerebral Blood Flow & Metabolism,7(Suppl. 1), S305. Google Scholar
Miceli, G., Caltagirone, C., Gainotti, G., Masullo, C., &Silveri, M. C. (1981). Neuropsychological correlates of localized cerebral lesions in non-aphasic brain-damaged patients.Journal of Clinical Neuropsychology,3, 53–63. PubMed Google Scholar
Miller, E. (1984). Verbal fluency as a function of a measure of verbal intelligence and in relation to different types of cerebral pathology.British Journal of Clinical Psychology,23, 53–57. PubMed Google Scholar
Miller, E. K. (2000). The prefrontal cortex: No simple matter.Neuro-Image,11, 447–450. PubMed Google Scholar
Miller, E. K., &Cohen, J. D. (2001). An integrative theory of prefrontal cortex function.Annual Review of Neuroscience,24, 167–202. PubMed Google Scholar
Miller, E. K., &Desimone, R. (1994). Parallel neuronal mechanisms for short-term memory.Science,263, 520–522. PubMed Google Scholar
Miller, E. K., Erickson, C. A., &Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque.Journal of Neuroscience,16, 5154–5167. PubMed Google Scholar
Miller, E. K., Li, L., &Desimone, R. (1993). Activity of neurons in anterior inferior temporal cortex during a short-term memory task.Journal of Neuroscience,13, 1460–1478. PubMed Google Scholar
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information.Psychological Review,63, 81–97. PubMed Google Scholar
Milner, B. (1963). Effects of different brain lesions on card sorting.Archives of Neurology,9, 90–100. Google Scholar
Milner, B. (1964). Some effects of frontal lobectomy in man. In J. M. Warren & K. Akert (Eds.),The frontal granular cortex and behavior (pp. 313–334). New York: McGraw-Hill. Google Scholar
Mishkin, M., &Manning, F. J. (1978). Non-spatial memory after selective prefrontal lesions in monkeys.Brain Research,143, 313–323. PubMed Google Scholar
Mishkin, M., &Pribram, K. H. (1955). Analysis of the effects of frontal lesions in monkey: I. Variations of delayed alternation.Journal of Comparative & Physiological Psychology,48, 492–495. Google Scholar
Mishkin, M., &Pribram, K. H. (1956). Analysis of the effects of frontal lesions in monkey: II. Variations of delayed response.Journal of Comparative & Physiological Psychology,49, 36–45. Google Scholar
Mishkin, M., Ungerleider, L. G., &Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways.Trends in Neurosciences,6, 414–417. Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., & Howerter, A. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis.Cognitive Psychology.
Moscovitch, M. (1994). Cognitive resources and dual-task interference effects at retrieval in normal people: The role of the frontal lobes and medial temporal cortex.Neuropsychology,8, 524–534. Google Scholar
Mountain, M. A., &Snow, W. G. (1993). Wisconsin Card Sorting Test as a measure of frontal pathology: A review.The Clinical Neuropsychologist,7, 108–118. Google Scholar
Nagahama, Y., Fukuyama, H., Yamauchi, H., Matsuzaki, S., Konishi, J., Shibasaki, H., &Kimura, J. (1996). Cerebral activation during performance of a card sorting test.Brain,119, 1667–1675. PubMed Google Scholar
Nagahama, Y., Okada, T., Katsumi, Y., Hayashi, T., Yamauchi, H., Sawamoto, N., Toma, K., Nakamura, K., Hanakawa, T., Konishi, J., Fuyukama, H., &Shibasaki, H. (1999). Transient neural activity in the medial superior frontal gyrus and precuneus time locked with attention shift between object features.NeuroImage,10, 193–199. PubMed Google Scholar
Nagahama, Y., Sadato, N., Yamauchi, H., Katsumi, Y., Hayashi, T., Fukuyama, H., Kimura, J., Shibasaki, H., &Yonekura, Y. (1998). Neural activity during attention shifts between object features.Neuro-Report,9, 2633–2638. Google Scholar
Nauta, W. J. H. (1964). Some efferent connections of the prefrontal cortex in the monkey. In J. M. Warren & K. Akert (Eds.),The frontal granular cortex and behavior (pp. 397–407). New York: McGraw-Hill. Google Scholar
Nauta, W. J. H. (1972). Neural associations of the frontal cortex.Acta Neurobiologiae Experimentalis,32, 125–140. PubMed Google Scholar
Nelson, H. E. (1976). A modified card sorting test sensitive to frontal lobe defects.Cortex,12, 313–324. PubMed Google Scholar
Newcombe, F. (1969).Missile wounds of the brain: A study of psychological deficits. Oxford: Oxford University Press. Google Scholar
Niki, H. (1974a). Differential activity of prefrontal units during right and left delayed response.Brain Research,70, 346–349. PubMed Google Scholar
Niki, H. (1974b). Prefrontal unit activity during delayed alternation in the monkey: I. Relation to the direction of response.Brain Research,68, 185–196. PubMed Google Scholar
Niki, H. (1974c). Prefrontal unit activity during delayed alternation in the monkey: II. Relation to absolute versus relative direction of response.Brain Research,68, 197–204. PubMed Google Scholar
Niki, H., &Watanabe, M. (1976). Prefrontal unit activity and delayed response: Relation to cue location versus direction of response.Brain Research,105, 79–88. PubMed Google Scholar
Norman, D. A., &Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.),Consciousness and self-regulation: Advances in research and theory (Vol. 4, pp. 1–18). New York: Plenum. Google Scholar
Nyström, L. E., Braver, T. S., Sabb, F. W., Delgado, M. R., Noll, D.C., &Cohen, J. D. (2000). Working memory for letters, shapes, and localizations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex.NeuroImage,11, 424–446. PubMed Google Scholar
O’Reilly, R. C., Braver, T. S., & Cohen, J. D. (1997, July).A biologically-based computational model of working memory. Paper presented at the Models of Working Memory Symposium, Boulder, CO.
O’Reilly, R. C., Braver, T. S., &Cohen, J. D. (1999). A biologicallybased computational model of working memory. In A. Miyake & P. Shah (Eds.),Models of working memory: Mechanisms of active maintenance and executive control (pp. 375–411). New York: Cambridge University Press. Google Scholar
Oscar-Berman, M. (1975). The effects of dorsolateral-frontal and ventrolateral-frontal lesions on spatial discrimination learning and delayed response in two modalities.Neuropsychologia,13, 237–246. PubMed Google Scholar
Owen, A. M. (1997). The functional organization of working memory processes within human lateral frontal cortex: The contribution of functional neuroimaging.European Journal of Neuroscience,9, 1329–1339. PubMed Google Scholar
Owen, A. M., Downes, J. J., Sahakian, B. J., Polkey, C. E., &Robbins, T. W. (1990). Planning and spatial working memory following frontal lobe lesions in man.Neuropsychologia,28, 1021–1034. PubMed Google Scholar
Owen, A. M., Evans, A. C., &Petrides, M. (1996). Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: A positron emission tomography study.Cerebral Cortex,6, 31–38. PubMed Google Scholar
Owen, A. M., Roberts, A. C., Hodges, J. R., Summers, B. A., Polkey, C. E., &Robbins, T. W. (1993). Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson’s disease.Brain,116, 1159–1175. PubMed Google Scholar
Owen, A. M., Roberts, A. C., Polkey, C. E., Sahakian, B. J., &Robbins, T. W. (1991). Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man.Neuropsychologia,29, 993–1006. PubMed Google Scholar
Pandya, D. N., &Barnes, D. L. (1987). Architecture and connections of the frontal lobe. In E. Perecman (Ed.),The frontal lobes revisited (pp. 41–72). New York: IRBN Press. Google Scholar
Pandya, D. N., &Yeterian, E. H. (1990). Prefrontal cortex in relation to other cortical areas in rhesus monkey: Architecture and connections.Progress in Brain Research,85, 63–93. PubMed Google Scholar
Pandya, D. N., &Yeterian, E. H. (1999). Comparison of prefrontal architecture and connections. In A. C. Roberts, T. W. Robbins, & L. Weiskrantz (Eds.),The prefrontal cortex: Executive and cognitive functions (pp. 51–66). Oxford: Oxford University Press. Google Scholar
Parasuraman, R. (1998).The attentive brain. Cambridge, MA: MIT Press. Google Scholar
Pardo, J. V., Pardo, P. J., Janer, K. W., &Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm.Proceedings of the National Academy of Sciences,87, 256–259. Google Scholar
Parkin, A. J., Bindschaedler, C., Harsent, L., &Metzler, C. (1996). Pathological false alarm rates following damage to the left frontal cortex.Brain & Cognition,32, 14–27. Google Scholar
Parkin, A. J., Leng, N. R. C., &Stanhope, N. (1988). Memory impairment following ruptured aneurysm of the anterior communicating artery.Brain & Cognition,7, 231–243. Google Scholar
Parks, R. W., Loewenstein, D. A., Dodrill, K. L., Barker, W. W., Yoshii, F., Chang, J. Y., Emran, A., Apicella, A., Sheramata, W.A., &Duara, R. (1988). Cerebral metabolic effects of a verbal fluency test: A PET scan study.Journal of Clinical & Experimental Neuropsychology,10, 565–575. Google Scholar
Passingham, R. E. (1975). Delayed matching after selective prefrontal lesions in monkeys.Brain Research,92, 89–102. PubMed Google Scholar
Pati, P., &Dash, A. S. (1990). Interrelationships between incidental memory, non-verbal intelligence and Stroop scores.Psycho-Lingua,20, 27–31. Google Scholar
Paus, T., Kalina, M., Patockova, L., Angerova, Y., Cerny, R., Mecir, P., Bauer, J., &Krabec, P. (1991). Medial vs lateral frontal lobe lesions and differential impairment of central-gaze fixation maintenance in man.Brain, 114, 2051–2067. PubMed Google Scholar
Pavlov, I. P. (1941).Conditioned reflexes and psychiatry (Vol. 2; W. H. Gantt, Trans.). New York: International Publishers. Google Scholar
Pendleton, M. G., Heaton, R. K., Lehman, R. A., &Hulihan, D. (1982). Diagnostic utility of the Thurstone Word Fluency Test in neuropsychological evaluations.Journal of Clinical Neuropsychology,4, 307–317. PubMed Google Scholar
Pennington, B. F. (1994). The working memory function of the prefrontal cortices. In M. M. Haith, J. B. Bensen, R. J. Roberts, & B. F. Pennington (Eds.),The development of future-oriented processes. Chicago: University of Chicago Press. Google Scholar
Perret.E. (1974). The left frontal lobe of man and the suppression of habitual responses in verbal categorical behavior.Neuropsychologia,12, 323–330. PubMed Google Scholar
Petrides, M. (1985). Deficits on conditional associative-learning tasks after frontal- and temporal-lobe lesions in man.Neuropsychologia,23, 601–614. PubMed Google Scholar
Petrides, M. (1989). Frontal lobes and memory. In F. Boller & J. Grafman (Eds.),Handbook of neuropsychology (Vol. 3, pp. 75–90). Amsterdam: Elsevier. Google Scholar
Petrides, M. (1990). Nonspatial conditional learning impaired in patients with unilateral frontal but not unilateral temporal lobe excisions.Neuropsychologia,28, 137–149. PubMed Google Scholar
Petrides, M. (1995). Impairments in non-spatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey.Journal of Neuroscience,15, 359–375. PubMed Google Scholar
Petrides, M., Alivisatos, B., Meyer, E., &Evans, A. C. (1993). Functional activation of the human frontal cortex during the performance of verbal working memory tasks.Proceedings of the National Academy of Sciences,90, 878–882. Google Scholar
Petrides, M., &Milner, B. (1982). Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man.Neuropsychologia,20, 249–262. PubMed Google Scholar
Petrides, M., &Pandya, D. N. (1994). Comparative architectonic analysis of the human and macaque frontal cortex. In F. Boller & J. Grafman (Eds.),Handbook of neuropsychology (Vol. 9, pp. 17–58). Amsterdam: Elsevier. Google Scholar
Pfefferbaum, A., Desmond, J. E., Galloway, C., Menon, V., Glover, G. H., &Sullivan, E. V. (2001). Reorganization of frontal systems used by alcoholics for spatial working memory: An fMRI study.NeuroImage,14, 7–20. PubMed Google Scholar
Phillips, L. H. (1997). Do “frontal tests” measure executive function? Issues of assessment and evidence from fluency tests. In P. Rabbitt (Ed.),Methodology of frontal and executive function (pp. 191–213). Hove, U.K.: Psychology Press. Google Scholar
Phillips, L. H. (1999). Age and individual differences in letter fluency.Developmental Neuropsychology,15, 249–267. Google Scholar
Pierrot-Deseilligny, C., Rivaud, S., Gaymard, B., &Agid, Y. (1991). Cortical control of reflexive visually-guided saccades.Brain,114, 1473–1485. PubMed Google Scholar
Pohl, W. (1973). Dissociation of spatial discrimination deficits following frontal and parietal lesions in monkeys.Journal of Comparative & Physiological Psychology,82, 227–239. Google Scholar
Pollmann, S. (2001). Switching between dimensions, locations, and responses: The role of left frontopolar cortex.NeuroImage,14, S118-S124. PubMed Google Scholar
Posner, M. I. (1988). Structures and functions of selective attention. In T. Boll & B. Bryant (Eds.),Clinical neuropsychology and brain function: Research, measurement, and practice. Washington, DC: American Psychological Association. Google Scholar
Posner, M. I., &Peterson, S. E. (1990). The attention system of the human brain.Annual Review of Neuroscience,13, 25–42. PubMed Google Scholar
Posner, M. I., &Raichle, M. E. (1994).Images of mind. New York: Freeman. Google Scholar
Postle, B. R., Berger, J. S., &D’Esposito, M. (1999). Functional neuroanatomical double dissociation of mnemonic and executive control processes contributing to working memory performance.Proceedings of the National Academy of Sciences,96, 12959–12964. Google Scholar
Postle, B. R., Berger, J. S., Taich, A. M., &D’Esposito, M. (2000). Activity in human frontal cortex associated with spatial working memory and saccadic behavior.Journal of Cognitive Neuroscience, 12(Suppl.), 2–14. PubMed Google Scholar
Postle, B. R., &D’Esposito, M. (1999). “What”-then-“where” in visual working memory: An event-related fMRI study.Journal of Cognitive Neuroscience,11, 585–597. PubMed Google Scholar
Postle, B. R., &D’Esposito, M. (2000). Evaluating models of the topographical organization of working memory function in frontal cortex with event-related fMRI.Psychobiology,28, 132–145. Google Scholar
Postle, B. R., Stern, C. E., Rosen, B. R., &Corkin, S. (2000). An fMRI investigation of cortical contributions to spatial and nonspatial visual working memory.NeuroImage,11, 409–423. PubMed Google Scholar
Prabhakaran, V., Narayanan, K., Zhao, Z., &Gabrieli, J. D. E. (2000). Integration of diverse information in working memory within the frontal lobe.Nature Neuroscience,3, 85–90. PubMed Google Scholar
Prabhakaran, V., Rypma, B., &Gabrieli, J. D. E. (2001). Neural substrates of mathematical reasoning: A functional magnetic resonance imaging study of neocortical activation during performance of the Necessary Arithmetic Operations Test.Neuropsychology,15, 115–127. PubMed Google Scholar
Prabhakaran, V., Smith, J. A. L., Desmond, J. E., Glover, G. H., &Gabrieli, J. D. E. (1997). Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven’s Progressive Matrices Test.Journal of Cognitive Psychology,33, 43–63. Google Scholar
Pribram, K. H., &Mishkin, M. (1956). Analysis of the effects of frontal lesions in monkey: III. Object alternation.Journal of Comparative & Physiological Psychology,49, 41–45. Google Scholar
Ptito, A., Crane, J., Leonard, G., Amsel, R., &Caramanos, Z. (1995). Visual-spatial localization by patients with frontal-lobe lesions invading or sparing area 46.NeuroReport,6, 1781–1784. PubMed Google Scholar
Quintana, J., &Fuster, J. M. (1993). Spatial and temporal factors in the role of prefrontal and parietal cortex in visuomotor integration.Cerebral Cortex,3, 122–132. PubMed Google Scholar
Quintana, J., Yajeya, J., &Fuster, J. M. (1988). Prefrontal representation of stimulus attributes during delay tasks: I. Unit activity in cross-temporal integration of sensory and sensory-motor information.Brain Research, 474, 211–222. PubMed Google Scholar
Rafal, R., Gershberg, F., Egly, R., Ivry, R., Kingstone, A., &Ro, T. (1996). Response channel activation and the lateral prefrontal cortex.Neuropsychologia,34, 1197–1202. PubMed Google Scholar
Ragland, J. D., Gur, R. C., Glahn, D. C., Censits, D. M., Smith, R. J., Lazarev, M. G., Alavi, A., &Gur, R. E. (1998). Frontotemporal cerebral blood flow change during executive and declarative memory tasks with schizophrenia: A positron emission tomography study.Neuropsychology,12, 399–413. PubMed Google Scholar
Raichle, M. E. (1994). Images of the mind: Studies with modern imaging techniques.Annual Review of Psychology,45, 333–356. PubMed Google Scholar
Rainer, G., Asaad, W. F., &Miller, E. K. (1998). Selective representation of relevant information by neurons in the primate prefrontal cortex.Nature,393, 577–579. PubMed Google Scholar
Ramier, A. M., &Hecaen, H. (1970). Role respectif des atteintes frontales et de la lateralisation lesionnelle dans les deficits de la “fluence verbal” [Respective role of frontal injuries and lesion lateralization in “verbal-fluency” deficits].Revue Neurologique,123, 2–22. Google Scholar
Rao, S. C., Rainer, G., &Miller, E. K. (1997). Integration of what and where in the primate prefrontal cortex.Science,276, 821–824. PubMed Google Scholar
Raz, N., Briggs, S. D., Marks, W., &Acker, J. D. (1999). Age-related deficits in generation and manipulation of mental images: II. The role of dorsolateral prefrontal cortex.Psychology & Aging,14, 436–444. Google Scholar
Reitan, R. M., &Wolfson, D. (1994). A selective and critical review of neuropsychological deficits and the frontal lobes.Neuropsychology Review,4, 161–197. PubMed Google Scholar
Richer, F., Decary, A., Lapierre, M. F., Rouleau, I., Bouvier, G., &Saint-Hilaire, J. M. (1993). Target detection deficits in frontal lobectomy.Brain & Cognition,21, 203–211. Google Scholar
Risberg, J., &Ingvar, D. H. (1973). Patterns of activation in the grey matter of the dominant hemisphere during memorizing and reasoning.Brain,96, 737–756. PubMed Google Scholar
Risberg, J., Maximilian, A. V., &Prohovnik, I. (1977). Changes of cortical activity patterns during habituation to a reasoning test.Neuropsychologia,15, 793–798. PubMed Google Scholar
Roberts, A. C., Robbins, T. W., &Weiskrantz, L. (1998).The prefrontal cortex: Executive and cognitive functions. Oxford: Oxford University Press. Google Scholar
Roberts, R. J., Jr.,Hager, L. D., &Heron, C. (1994). Prefrontal cognitive processes: Working memory and inhibition in the antisaccade task.Journal of Experimental Psychology: General,123, 374–393. Google Scholar
Roberts, R. J., Jr., &Pennington, B. F. (1996). An interactive framework for examining prefrontal cognitive processes.Developmental Neuropsychology,12, 105–126. Google Scholar
Rogers, R. D., Andrews, T. C., Grasby, P. M., Brooks, D. J., &Robbins, T. W. (2000). Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans.Journal of Cognitive Neuroscience,12, 142–162. PubMed Google Scholar
Rogers, R. D., &Monsell, S. (1995). The cost of a predictable switch between simple cognitive tasks.Journal of Experimental Psychology: General,124, 207–231. Google Scholar
Rogers, R. D., Sahakian, B. J., Hodges, J. R., Polkey, C. E., Kennard, C., &Robbins, T. W. (1998). Dissociating executive mechanisms of task control following frontal lobe damage and Parkinson’s disease.Brain,121, 815–842. PubMed Google Scholar
Romo, R., Brody, C. D., Hernández, A., &Lemus, L. (1999). Neuronal correlates of parametric working memory in the prefrontal cortex.Nature,399, 470–473. PubMed Google Scholar
Rosen, V. M., &Engle, R. W. (1997). The role of working memory capacity in retrieval.Journal of Experimental Psychology: General,126, 211–227. Google Scholar
Rosen, V. M., &Engle, R. W. (1998). Working memory capacity and suppression.Journal of Memory & Language,39, 418–436. Google Scholar
Rosenkilde, C. E. (1979). Functional heterogeneity of the prefrontal cortex in the monkey: A review.Behavioral & Neural Biology,25, 301–345. Google Scholar
Rosenkilde, C. E., Bauer, R. H., &Fuster, J. M. (1981). Single cell activity in ventral prefrontal cortex of behaving monkeys.Brain Research,209, 375–394. PubMed Google Scholar
Rosvold, H. E., &Delgado, J. M. R. (1956). The effect on delayed alternation test performance of stimulating or destroying electrically structures within the frontal lobes of the monkey’s brain.Journal of Comparative & Physiological Psychology,49, 365–372. Google Scholar
Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S. J., &Passingham, R. E. (2000). The prefrontal cortex: Response selection or maintenance within working memory?Science,288, 1656–1660. PubMed Google Scholar
Rylander, G. (1939).Personality changes after operations on the frontal lobes. Copenhagen: Munksgaard. Google Scholar
Rypma, B., &D’Esposito, M. (1999). The roles of prefrontal brain regions in components of working memory: Effects of memory load and individual differences.Proceedings of the National Academy of Sciences,96, 6558–6563. Google Scholar
Rypma, B., Prabhakaran, V., Desmond, J. E., Glover, G. H., &Gabrieli, J. D. E. (1999). Load-dependent roles of frontal brain regions in the maintenance of working memory.NeuroImage,9, 216–226. PubMed Google Scholar
Salmon, D. P., &D’Amato, M. R. (1981). Note on delay-interval illumination effects on retention in monkeys (Cebus apella).Journal of the Experimental Analysis of Behavior,36, 381–385. PubMed Google Scholar
Sarter, M., Bernston, G. G., &Cacioppo, J. T. (1996). Brain imaging and cognitive neuroscience: Toward strong inference in attributing function to structure.American Psychologist,51, 13–21. PubMed Google Scholar
Schumacher, E. H., Lauber, E., Awh, E., Jonides, J., Smith, E. E., &Koeppe, R. A. (1996). PET evidence for an amodal verbal working memory system.NeuroImage,3, 79–88. PubMed Google Scholar
Seidman, L. J., Breiter, H. C., Goodman, J. M., Goldstein, J. M., Woodruff, P. W. R., O’Craven, K., Savoy, R., Tsuang, M. T., &Rosen, B. R. (1998). A functional magnetic resonance imaging study of auditory vigilance with low and high information processing demands.Neuropsychology,12, 505–518. PubMed Google Scholar
Sergent, J. (1994). Brain-imaging studies of cognitive functions.Trends in Neurosciences,17, 221–227. PubMed Google Scholar
Settlage, P., Zable, M., &Harlow, H. F. (1948). Problem solution by monkeys following bilateral removal of the prefrontal areas: VI. Performance on tests requiring contradictory reactions to similar and to identical stimuli.Journal of Experimental Psychology,38, 50–65. PubMed Google Scholar
Shah, P., &Miyake, A. (1996). The separability of working memory resources for spatial thinking and language processing: An individual differences approach.Journal of Experimental Psychology: General,125, 4–27. Google Scholar
Shallice, T. (1988).From neuropsychology to mental structure. Cambridge: Cambridge University Press. Google Scholar
Shallice, T., &Burgess, P. W. (1991a). Deficits in strategy application following frontal lobe damage in man.Brain,114, 727–741. PubMed Google Scholar
Shallice, T., &Burgess, P. W. (1991b). Higher-order cognitive impairments and frontal lobe lesions in man. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.),Frontal lobe function and dysfunction (pp. 125–138). Oxford: Oxford University Press. Google Scholar
Shimamura, A. P. (2000). The role of the prefrontal cortex in dynamic filtering.Psychobiology,28, 207–218. Google Scholar
Shimamura, A. P., Janowsky, J. S., &Squire, L. R. (1990). Memory for the temporal order of events in patients with frontal lobe lesions and amnesic patients.Neuropsychologia,28, 803–813. PubMed Google Scholar
Shimamura, A. P., Jurica, P. J., Mangels, J. A., Gershberg, F. B., &Knight, R. T. (1995). Susceptibility to memory interference effects following frontal lobe damage: Findings from tests of paired-associate learning.Journal of Cognitive Neuroscience,7, 144–152. Google Scholar
Shindy, W. W., Posley, K. A., &Fuster, J. M. (1994). Reversible deficit in haptic delay tasks from cooling prefrontal cortex.Cerebral Cortex,4, 443–450. PubMed Google Scholar
Simkins-Bullock, J., Brown, G. G., Greiffenstein, M., Malik, G.M., &McGillicuddy, J. (1994). Neuropsychological correlates of shortterm memory distractor tasks among patients with surgical repair of anterior communicating artery aneurysms.Neuropsychology,8, 246–254. Google Scholar
Skinner, J. E., &Yingling, C. D. (1977). Central gating mechanisms that regulate event-related potentials and behavior.Progress in Clinical Neurophysiology,1, 30–69. Google Scholar
Smith, E. E., &Jonides, J. (1997). Working memory: A view from neuro-imaging.Cognitive Psychology,33, 5–42. PubMed Google Scholar
Smith, E. E., Jonides, J., &Koeppe, R. A. (1996). Dissociating verbal and spatial working memory using PET.Cerebral Cortex,6, 11–20. PubMed Google Scholar
Smith, E. E., Jonides, J., Koeppe, R. A., Awh, E., Schumacher, E. H., &Minoshima, S. (1995). Spatial versus object working memory: PET investigations.Journal of Cognitive Neuroscience,7, 337–356. Google Scholar
Snow, R. E., Kyllonen, P. C., &Marshalek, B. (1984). The topography of ability and learning correlations. In R. J. Sternberg (Ed.),Advances in the psychology of human intelligence (Vol. 2, pp. 47–103). Hillsdale, NJ: Erlbaum. Google Scholar
Stamm, J. S. (1961). Electrical stimulation of frontal cortex in monkeys during learning of an alternation task.Journal of Neurophysiology,24, 414–426. Google Scholar
Stamm, J. S., &Rosen, S. C. (1973). The locus and crucial time of implication of prefrontal cortex in the delayed response task. In K. H. Pribram & A. R. Luria (Eds.),Psychophysiology of the frontal lobes (pp. 139–153). New York: Academic Press. Google Scholar
Stankov, L., &Crawford, J. D. (1993). Ingredients of complexity in fluid intelligence.Learning & Individual Differences,5, 73–111. Google Scholar
Stern, C. E., Owen, A. M., Tracey, I., Look, R. B., Rosen, B. R., &Petrides, M. (2000). Activity in ventrolateral and mid-dorsolateral prefrontal cortex during nonspatial visual working memory processing: Evidence from functional magnetic resonance imaging.Neuro-Image,11, 392–399. PubMed Google Scholar
Stroop, J. R. (1935). Studies of interference in serial verbal reactions.Journal of Experimental Psychology,18, 643–662. Google Scholar
Stuss, D. T., &Benson, D. F. (1984). Neuropsychological studies of the frontal lobes.Psychological Bulletin,95, 3–28. PubMed Google Scholar
Stuss, D. T., Floden, D., Alexander, M. P., Levine, B., &Katz, D. (2001). Stroop performance in focal lesion patients: Dissociation of processes and frontal lobe lesion location.Neuropsychologia,39, 771–786. PubMed Google Scholar
Stuss, D. T., Levine, B., Alexander, M. P., Hong, J., Palumbo, C., Hamer, L., Murphy, K. J., &Izukawa, D. (2000). Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: Effects of lesion location and test structure on separable cognitive processes.Neuropsychologia,38, 388–402. PubMed Google Scholar
Stuss, D. T., Shallice, T., Alexander, M. P., &Picton, T. W. (1995). A multidisciplinary approach to anterior attentional functions. In J. Grafman, K. J. Holyoak, & F. Boller (Eds.),Structure and functions of the human prefrontal cortex. (Annals of the New York Academy of Sciences, Vol. 769, pp. 191–211). New York: New York Academy of Sciences. Google Scholar
Süß, H.-M., Oberauer, K., Wittman, W. W., Wilhelm, O., &Schulze, R. (2002). Working-memory capacity explains reasoning ability and a little bit more.Intelligence,30, 261–288. Google Scholar
Swartz, B. E., Halgren, E., Fuster, J. M., &Mandelkern, M. (1994). An 18FDG-PET study of cortical activation during a shortterm visual memory task in humans.NeuroReport,5, 925–928. PubMed Google Scholar
Sweeney, J. A., Mintun, M. A., Kwee, S., Wiseman, M. B., Brown, D. L., Rosenberg, D. R., &Carl, J. R. (1996). Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.Journal of Neurophysiology,75, 454–468. PubMed Google Scholar
Taylor, S. F., Kornblum, S., Lauber, E. J., Minoshima, S., &Koeppe, R. A. (1997). Isolation of specific interference processing in the Stroop task: PET activation studies.NeuroImage,6, 81–92. PubMed Google Scholar
Teuber, H. L., Battersby, W. S., &Bender, M. B. (1951). Performance of complex visual tasks after cerebral lesions.Journal of Nervous & Mental Disease,114, 413–429. Google Scholar
Teuber, H. L., &Mishkin, M. (1954). Judgment of visual and postural vertical after brain injury.Journal of Psychology,38, 161–175. Google Scholar
Teuber, H. L., &Weinstein, S. (1956). Ability to discover hidden figures after cerebral lesions.Archives of Neurology & Psychiatry,76, 369–379. Google Scholar
Troyer, A. K., Moscovitch, M., Winocur, G., Alexander, M. P., &Stuss, D. (1998). Clustering and switching on verbal fluency: The effects of focal frontal- and temporal-lobe lesions.Neuropsychologia,36, 499–504. PubMed Google Scholar
Tucha, O., Smely, C., &Lange, K. W. (1999). Verbal and figural fluency in patients with mass lesions of the left or right frontal lobes.Journal of Clinical & Experimental Neuropsychology,21, 229–236. Google Scholar
Tuholski, S. W., Engle, R. W., &Baylis, G. C. (2001). Individual differences in working memory capacity and enumeration.Memory & Cognition,29, 484–492. Google Scholar
Turner, M. L., &Engle, R. W. (1989). Is working memory capacity task dependent?Journal of Memory & Language,28, 127–154. Google Scholar
Uhl, F., Franzen, P., Serles, W., Lange, W., Lindinger, G., &Deecke, L. (1990). Anterior frontal cortex and the effect of proactive interference in paired associate learning: A DC potential study.Journal of Cognitive Neuroscience,2, 373–382. Google Scholar
Uhl, F., Podreka, I., &Deecke, L. (1994). Anterior frontal cortex and the effect of proactive interference in word pair learning-Results of Brain-SPECT.Neuropsychologia,32, 241–247. PubMed Google Scholar
Upton, D., &Corcoran, R. (1995). The role of the right temporal lobe in card sorting: A case study.Cortex,31, 405–409. PubMed Google Scholar
Valentine, E. R. (1975). Performance on two reasoning tasks in relation to intelligence, divergence and interference proneness.British Journal of Educational Psychology,45, 198–205. Google Scholar
Van der Linden, M., Bruyer, R., Roland, J., &Schils, J. P. (1993). Proactive interference in patients with amnesia resulting from anterior communicating artery aneurysm.Journal of Clinical & Experimental Neuropsychology,15, 525–536. Google Scholar
Van der Linden, M., Coyette, F., &Seron, X. (1992). Selective impairment of the “central executive” component of working memory: A single case study.Cognitive Neuropsychology,9, 301–326. Google Scholar
van Zomeren, A. H., &Brouwer, W. H. (1994).Clinical neuropsychology of attention. Oxford: Oxford University Press. Google Scholar
Vendrell, P., Junque, C., Pujol, J., Jurado, M. A., Molet, J., &Grafman, J. (1995). The role of prefrontal regions in the Stroop task.Neuropsychologia,33, 341–362. PubMed Google Scholar
Verin, M., Partiot, A., Pillon, B., Malapani, C., Agid, Y., &Dubois, B. (1993). Delayed response tasks and prefrontal lesions in man—Evidence for self generated patterns of behaviour with poor environmental modulation.Neuropsychologia,31, 1379–1396. PubMed Google Scholar
Vilkki, J., Holst, P., Ohman, J., Servo, A., &Heiskanen, O. (1992). Cognitive test performances related to early and late computed tomography findings after closed-head injury.Journal of Clinical & Experimental Neuropsychology,14, 518–532. Google Scholar
Volpe, B. T., &Hirst, W. (1983). Amnesia following the rupture and repair of an anterior communicating artery aneurysm.Journal of Neurology, Neurosurgery, & Psychiatry,46, 704–709. Google Scholar
Walker, R., Husain, M., Hodgson, T. L., Harrison, J., &Kennard, C. (1998). Saccadic eye movements and working memory deficits following damage to human prefrontal cortex.Neuropsychologia,36, 1141–1159. PubMed Google Scholar
Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Mishkin, F. S., de Menezes Santos, M., Thomas, C. R., &Miller, B. L. (1999). A system for relational reasoning in human prefrontal cortex.Psychological Science,10, 119–125. Google Scholar
Warkentin, S., Nilsson, A., Risberg, J., &Karlson, S. (1989). Absence of frontal lobe activation in schizophrenia.Journal of Cerebral Blood Flow & Metabolism,9 (Suppl. 1), S354. Google Scholar
Warrington, E. K., James, M., &Maciejewski, C. (1986). The WAIS as a lateralizing and localizing diagnostic instrument: A study of 656 patients with unilateral cerebral lesions.Neuropsychologia,24, 223–239. PubMed Google Scholar
Watanabe, T., &Niki, H. (1985). Hippocampal unit activity and delayed response in the monkey.Brain Research,325, 241–254. PubMed Google Scholar
Weigl, E. (1941). On the psychology of so-called processes of abstraction.Journal of Abnormal & Social Psychology,6, 3–33. Google Scholar
Weinberger, D. R., Berman, K. F., &Zec, R. F. (1986). Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia.Archives of General Psychiatry,43, 114–124. PubMed Google Scholar
West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging.Psychological Bulletin,120, 272–292. PubMed Google Scholar
West, R. [L.], &Alain, C. (1999). Event-related neural activity associated with the Stroop task.Cognitive Brain Research,8, 157–174. PubMed Google Scholar
West, R. [L.], &Alain, C. (2000a). Effects of task context and fluctuations of attention on neural activity supporting performance of the Stroop task.Brain Research,873, 102–111. PubMed Google Scholar
West, R. [L.], &Alain, C. (2000b). Evidence for the transient nature of a neural system supporting goal-directed action.Cerebral Cortex,10, 748–752. PubMed Google Scholar
White, I. M., &Wise, S. P. (1999). Rule dependent neuronal activity in the prefrontal cortex.Experimental Brain Research,126, 315–335. Google Scholar
Wickens, D. (1970). Encoding categories of words: An empirical approach to memory.Psychological Review,77, 1–15. Google Scholar
Wilson, F. A.W., O’Scalaidhe, S. P., &Goldman-Rakic, P. S. (1993). Dissociation of object and spatial processing domains in primate prefrontal cortex.Science,260, 1955–1958. PubMed Google Scholar
Wilson, W. A., Jr. (1962). Alternation in normal and frontal monkeys as a function of response and outcome of the previous trial.Journal of Comparative & Physiological Psychology,55, 701–704. Google Scholar
Wise, S. P., Murray, E. A., &Gerfen, C. R. (1996). The frontal cortexbasal ganglia system in primates.Critical Reviews in Neurobiology,10, 317–356. PubMed Google Scholar
Woodrow, H. (1916). The faculty of attention.Journal of Experimental Psychology,1, 285–318. Google Scholar
Woods, D. L., &Knight, R. T. (1986). Electrophysiological evidence of increased distractibility after dorsolateral prefrontal lesions.Neurology,36, 212–216. PubMed Google Scholar
Woods, R. P. (1996). Modeling for intergroup comparisons of imaging data.NeuroImage, 4, S84-S94. PubMed Google Scholar
Worsham, R. W., &D’Amato, M. R. (1973). Ambient light, white noise, and monkey vocalization as sources of interference in visual short-term memory of monkeys.Journal of Experimental Psychology,99, 99–105. PubMed Google Scholar
Yacosynski, G. K., &Davies, L. (1945). An experimental study of the frontal lobes in man.Psychosomatic Medicine,7, 97–107. Google Scholar
Yamaguchi, S., &Knight, R. T. (1990). Gating of somatosensory inputs by human prefrontal cortex.Brain Research,521, 281–288. PubMed Google Scholar
Yingling, C. D., &Skinner, J. E. (1977). Gating of thalamic input to cerebral cortex by nucleus reticularis thalami. In J. E. Desmedt (Ed.),Progress in clinical neurophysiology (Vol. 1, pp. 70–96). Basel: Karger. Google Scholar
Zable, M., &Harlow, H. F. (1946). The performance of rhesus monkeys on series of object-quality and positional discriminations and discrimination reversals.Journal of Comparative Psychology,39, 13–23. PubMed Google Scholar
Zakay, D., &Block, R. A. (1997). Temporal cognition.Current Directions in Psychological Science,6, 12–16. Google Scholar
Zatorre, R. J., &McEntee, W. J. (1983). Semantic encoding deficits in a case of traumatic amnesia.Brain & Cognition,2, 331–345. Google Scholar
Zola-Morgan, S., &Squire, L. R. (1985). Medial temporal lesions in monkeys impair memory on a variety of tasks sensitive to human amnesia.Behavioral Neuroscience, 99, 22–34. PubMed Google Scholar
Zysset, S., Müller, K., Lohman, G., &von Cramon, D. Y. (2001). Color-word matching Stroop task: Separating interference and response conflict.NeuroImage,13, 29–36. PubMed Google Scholar