Sensitive Detection of Proteopathic Seeding Activity with FRET Flow Cytometry (original) (raw)
Summary
Cell-to-cell transfer of protein aggregates, or proteopathic seeds, may underlie the progression of pathology in neurodegenerative diseases. Here, a novel FRET flow cytometry assay is described that enables specific and sensitive detection of seeding activity from recombinant or biological samples.
Abstract
Increasing evidence supports transcellular propagation of toxic protein aggregates, or proteopathic seeds, as a mechanism for the initiation and progression of pathology in several neurodegenerative diseases, including Alzheimer's disease and the related tauopathies. The potentially critical role of tau seeds in disease progression strongly supports the need for a sensitive assay that readily detects seeding activity in biological samples.
By combining the specificity of fluorescence resonance energy transfer (FRET), the sensitivity of flow cytometry, and the stability of a monoclonal cell line, an ultra-sensitive seeding assay has been engineered and is compatible with seed detection from recombinant or biological samples, including human and mouse brain homogenates. The assay employs monoclonal HEK 293T cells that stably express the aggregation-prone repeat domain (RD) of tau harboring the disease-associated P301S mutation fused to either CFP or YFP, which produce a FRET signal upon protein aggregation. The uptake of proteopathic tau seeds (but not other proteins) into the biosensor cells stimulates aggregation of RD-CFP and RD-YFP, and flow cytometry sensitively and quantitatively monitors this aggregation-induced FRET. The assay detects femtomolar concentrations (monomer equivalent) of recombinant tau seeds, has a dynamic range spanning three orders of magnitude, and is compatible with brain homogenates from tauopathy transgenic mice and human tauopathy subjects. With slight modifications, the assay can also detect seeding activity of other proteopathic seeds, such as α-synuclein, and is also compatible with primary neuronal cultures. The ease, sensitivity, and broad applicability of FRET flow cytometry makes it useful to study a wide range of protein aggregation disorders.
Introduction
The accumulation of intracellular tau amyloids defines tauopathies such as Alzheimer's disease. In early disease stages, pathology is generally localized to discrete regions of the brain, but with disease progression, pathology invariably spreads along distinct neural networks1-5. Accumulating evidence suggests transcellular propagation of toxic protein aggregates underlies this pathology (reviewed in 6-10). In this model, proteopathic seeds (e.g., tau) are released from donor cells and enter neighboring cells, transforming native tau protein into the misfolded form via templated conformational change11-15. The assay descr
Protocol
NOTE: This protocol emphasizes the use of FRET flow cytometry for detecting seeding activity from mouse biological samples. It is also compatible with recombinant fibrils and human biological samples. Mouse euthanasia and brain harvesting was performed in accordance with IACUC-approved procedures.
1. Brain Extraction
- Following deep anesthetization with isoflurane (2%), perfuse a mouse with ice-cold PBS containing 0.03% heparin, and extract the brain following the details described in Gage _et al._18
- Place extracted tissue in a cryo-vial, and snap freeze by placing in liquid nitrogen. Alternatively, freeze tissue on dry ic
Results
FRET flow cytometry enables sensitive, quantitative, and rapid detection of seeding activity from recombinant or biological samples. Assay setup is facile: monoclonal-derived stable cell lines expressing tau-RD-CFP/YFP are transduced with seed material, incubated for 24-48 hr, and subjected to flow cytometry analysis (Figure 1A). In the absence of seeds, biosensor cells maintain tau in a soluble, monomeric form (Figure 1B). In the presence of seeds, however, biosensor cells convert tau i...
Discussion
The FRET flow cytometry system described here is a powerful tool for quickly and quantitatively assessing tau seeding activity. It requires only moderate cell culture experience and a working knowledge of FRET and flow cytometry. Other seeding assays, such as Thioflavin T - which exhibits enhanced fluorescence when bound to beta sheet structure - are laborious and require a pure, recombinant protein substrate. Additionally, in vitro seeding assays for tau are only semi-quantitative and generally insensitive to s...
Disclosures
This assay has been licensed to Janssen Pharmaceuticals.
Acknowledgements
This work was supported by the Tau Consortium (M.I.D); National Institutes of Health Grant 1R01NS071835 (M.I.D.), a Department of Defense Grant PT110816 (to M.I.D.), 1F32NS087805 (to J.L.F.), and 1F31NS079039 (to B.B.H.).
Materials
Name | Company | Catalog Number | Comments |
---|---|---|---|
TBS | Sigma | T5912 | |
cOmplete Protease Inhibitors (EDTA-free) | Roche | 4693159001 | |
Cryo-vials | Sarstedt | 72.694.006 | |
Analytical Balance | Mettler Toledo | XSE 105DU | |
Weighing Boats | Fisher Scientific | 13-735-743 | |
15 ml conical tube | USA Scientific | 1475-0501 | |
Omni Sonic Ruptor Ultrasonic Homogenizer | Omni International | 18-000-115 | |
Micro-Tip for Ultrasonic Homogenizer | Omni International | OR-T-156 | |
2-Propanol | Fisher Scientific | A451 | |
Noise Cancelling Ear Muffs | Fisher Scientific | 19-145-412 | |
Kimwipes | Fisher Scientific | S47299 | |
1.5 ml tubes | USA Scientific | 1615-5510 | |
Microcentrifuge | Eppendorf | 5424 000.215 | |
DPBS | Life Technologies | 14190-136 | |
DMEM | Life Technologies | 11965-084 | |
Fetal Bovine Serum | HyClone | SH30071.03 | |
Penicillin-Streptomycin | Life Technologies | 15140-122 | |
GlutaMax | Life Technologies | 35050-061 | |
Trypsin-EDTA | Life Technologies | 25300-054 | |
50 ml Conical Tubes | Phenix Research | SS-PH15 | |
25 ml reagent resevoirs | VWR | 41428-954 | |
Multi channel pipet | Fisher Scientific | TI13-690-049 | |
96 well flat bottom plates | Corning | 3603 | |
Opti-MEM | Life Technologies | 31985-070 | |
Lipofectamine 2000 | Invitrogen | 11668019 | |
96 well round bottom plates | Corning | 3788 | |
16% Paraformaldehyde | Electron Microscopy Sciences | RT 15710 | |
PBS | Sigma-Aldrich | P5493 | |
EDTA | Sigma-Aldrich | ED2SS | |
HBSS | Life Technologies | 14185-052 | |
Sorvall ST 40 Centrifuge | Thermo Scientific | 75004509 | |
BIOLiner Swinging Bucket Rotor | Thermo Scientific | 75003796 | |
Hemacytometer | VWR | 15170-172 | |
MACSQuant VYB Flow Cytomter | Miltenyi Biotec | 130-096-116 | |
Chill 96 Rack | Miltenyi Biotec | 130-094-459 | |
Flow Jo analysis software | Flow Jo | ||
20 μl pipet tips | Rainin | GPS-L10 | |
200 μl pipet tips | Rainin | GPS-250 | |
1 ml pipet tips | Rainin | GPS-1000 | |
200 μl pipet tips | USA Scientific | 1111-1800 | |
5 ml serological pipett | Phenix Research | SPG-606180 | |
10 ml serological pipett | Phenix Research | SPG-607180 | |
25 ml Serological pipett | Phenix Research | SPG-760180 |
References
- Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., Greicius, M. D. Neurodegenerative diseases target large-scale human brain networks. Neuron. 62 (1), 42-52 (2009).
- Zhou, J., Gennatas, E. D., Efstathios, D., Kramer, J. H., Miller, B. L., Seeley, W. W.