Detection of genetic diversity in closely related bread wheat using microsatellite markers (original) (raw)
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
References
- Chen HB, Martin JM, Lavin M, Talbert LE (1994) Genetic diversity in hard red spring wheat based on sequence-tagged-site PCR markers. Crop Sci 34:1629–1632
Google Scholar - Cox TS, Lookhart GL, Walker DE, Harrell LG, Albers LD, Rodgers DM (1985) Genetic relationships among hard red winter wheat cultivars as evaluated by pedigree analysis and gliadin polyacrylamide-gel electrophoretic patterns. Crop Sci 25:1058–1063
Google Scholar - Devos KM, Bryan GJ, Collins AJ, Stephenson P, Gale MD (1995) Application of two microsatellite sequences in wheat storage proteins as molecular markers. Theor Appl Genet 90:247–252
CAS Google Scholar - Dweikat I, MacKenzie S, Levy M, Ohm H (1993) Pedigree assessment using RAPD-DGGE in cereal crop species. Theor Appl Genet 83:497–505
Google Scholar - Graner A, Ludwig WF, Melchinger AE (1995) Relationships among European barley germplasm. II. Comparison of RFLP and pedigree data. Crop Sci 34:1199–1205
Google Scholar - He S, Ohm H, Mackenzie S (1992) Detection of DNA sequence polymorphisms among wheat varieties. Theor Appl Genet 84:573–578
Google Scholar - Levinson G, Gutman GA (1987) Slipped strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221
CAS PubMed Google Scholar - Martynov SP, Dobrotvorskaya TV, Stehno Z, Dotlacil L, Faberova I, Holubec V (1992) Catalogue — genealogies and gene alleles identified in 31000 cultivars and lines of wheat. Research Institute of Crop Production, Prague
Google Scholar - Melchinger AE, Graner A, Singh M, Messmer MM (1995) Relationships among European barley germplasm I. Genetic diversity among winter and spring cultivars revealed by RFLPs. Crop Sci 34:1191–1199
Google Scholar - Murphy GL, Connell TD, Barritt DS, Koomey M, Cannon JG (1989) Phase variation of gonococcal protein. II. Regulation of gene expression by slipped-strand mispairing of a repetitive DNA sequence. Cell 56:539–547
Google Scholar - Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273
CAS PubMed Google Scholar - Plaschke J, Börner A, Wendehake K, Ganal MW, Röder MS (1995) The use of wheat aneuploids for the chromosomal assignment of microsatellite loci. Euphytica (in press)
- Podani J (1990) SYN-TAX III-pc-supplement3: Macintosh version. Abstr Bot 14:23–29
Google Scholar - Röder MS, Plaschke J, König SU, Börner A, Sorrells ME, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246:327–333
PubMed Google Scholar - Rongwen J, Akkaya MS, Bhagwat AA, Lavi U, Cregan PB (1995) The use of microsatellite DNA markers for soybean genotype identification. Theor Appl Genet 90:43–48
CAS Google Scholar - Saghai Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA 91:5466–5470
PubMed Google Scholar - Scarth R (1981) The genetic control of daylength response in wheat. Ph. D thesis, The University of Cambridge
- Sears ER (1966) Nuilisomic-tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulation and plant genetics. Oliver and Boyd, Edinburgh, pp 29–45
Google Scholar - Sears ER, Sears LMS (1978) The telocentric chromosomes of common wheat. In: Ramanujam S (ed) Proc 5th Int Wheat Genet Symp. Indian Soc Genet Plant Breed, New Delhi, pp 389–407
Google Scholar - Sheen SJ, Snyder LA (1964) Studies on the inheritance of resistance to six stem rust cultures using chromosome substitution lines of a Marquis wheat selection. Can J Genet Cytol 6:74–82
Google Scholar - Talbert LE, Blake NK, Chee PW, Blake TK, Magyar GM (1994) Evaluation of “sequence-tagged-site” PCR products as molecular markers in wheat. Theor Appl Genet 87:789–794
CAS Google Scholar - Tinker NA, Fortin MG, Mather DE (1993) Random amplified polymorphic DNA and pedigree relationships in spring barley. Theor Appl Genet 85:976–984
Google Scholar - Tautz D, Schlötterer C (1994) Simple sequences. Curr Opin Genet Dev 4:832–837
Google Scholar - Vaccino P, Accerbi M, Corbellini M (1993) Cultivar identification in T. aestivum using highly polymorphic RFLP probes. Theor Appl Genet 86:833–836
Google Scholar - Viglasi P (1968) Short-strawed mutants of Karcag 522 winter wheat induced by gamma rays. Acta Agron 17:205–214
Google Scholar - Weber JL (1990) Informativeness of human (dC-dA)n·(dG-dT) n polymorphisms. Genomics 7:524–530
CAS PubMed Google Scholar - Wolff RK, Plaetke R, Jeffreys AJ, White R (1989) Unequal crossingover between homologous chromosomes is not the major mechanism involved in the generation of new alleles at VNTR loci. Genomics 5:382–384
Google Scholar - Ynag GP, Saghai Maroof MA, Xu CG, Qifa Zhang, Biyashev RM (1994) Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. Mol Gen Genet 245:187–194
CAS PubMed Google Scholar