For example, see Witten, E. (1989).Commun. Math. Phys.121, 351; Moore, G., and Seiberg, N. (1989).Commun. Math. Phys.123, 177; Reshetikhin, N. Yu., and Turaev, V. G. (1991)Invent, math.103, 547; Walker, K. (1991). “On Witten's 3-manifold invariants,” UCSD preprint. Google Scholar
Witten, E. (1988).Commun. Math. Phys.117, 353; (1988).Phys. Lett.206B 601. Google Scholar
Saint Augustine (1961).Confessions, transl., with an introduction by R. S. Pine-Coffin (Viking Penguin Inc., New York); parenthesized numbers refer to pages in this edition. Google Scholar
Finkelstein, D. (1969).Phys. Rev.184, 1261; Myrheim, J. (1978). “Statistical geometry,” CERN preprint TH-2538; 't Hooft, G. (1979). In_Recent developments in Gravitation, Cargèse 1978_, M. Lévy and S. Deser, eds., NATO AST Ser. B vol. 44, (Plenum Press, New York). Google Scholar
Bombelli, L., Lee, J., Meyer, D., and Sorkin, R. D. (1987).Phys. Rev. Lett.59, 521; Moore, C. (1988).Phys. Rev. Lett.60, 655; Bombelli, L., Lee, J., Meyer, D., and Sorkin, R. D. (1988).Phys. Rev. Lett.60, 656 (reply to C. Moore); Bombelli, L. (1987).Space-time as a causal set, Ph.D. thesis (physics), Syracuse University. Google Scholar
For reviews see Witten, E. (1991). In_Surveys in Differential Geometry. (Proc, Conf. on Geometry and Topology, Harvard University 27–29 April 1990_, sponsored by Lehigh University), C. C. Hsiung and S. T. Yau, eds.,Suppl. to J. Diff. Geom.1, 243; Klebanov, I. R. (1991). “String theory in two dimensions,” Princeton University preprint PUPT-1271, July 1991; Ginsparg, P. (1991). “Matrix models of 2d gravity,” LANL preprint LA-UR-91-9999 (December 1991).
Riemann, G. F. B. (1919).Über die Hypothesen, welche der Geometrie zugrunde liegen, ed. H. Weyl (Springer-Verlag, Berlin). Google Scholar
Hawking, S. W., King, A. R., and McCarthy, P. J. (1976).J. Math. Pliys.17, 174; Malament, D. (1977).J. Math. Phys.18 1399. Google Scholar
Stanley, R. P. (1986).Enumerative Combinatorics, vol.I (Wadsworth & Brooks/Cole, Monterey). Google Scholar
Meyer, D. A. (1988).The Dimension of Causal Sets, Ph.D. thesis (mathematics), M.I.T.; Bombelli, L., and Meyer, D. A. (1989).Phys. Lett.A141 226; Meyer, D. A., and Sorkin, R. D. (1993). “On poset completion,” in preparation; Bombelli, L., and Sorkin, R. D. (1993). “When are two Lorentzian metrics close?” in preparation.
Sorkin, R. D. (1991). In_Proc. of IX Italian Conf. on General Relativity and Gravitational Physics, 24–29 September 1990, Capri_, R. Cianci, R. De Ritis, M. Francaviglia, G. Marmo, C. Rubano, and P. Scudellaro, eds. (World Scientific, Singapore); (1991). In_Relativity and Gravitation: Classical and Quantum (Proc. SILARG VII Conference, December 1990_, Mexico City (Cocoyoc), Mexico), J. C. D'Olivo, E. Nahmad-Achar, M. Rosenbaum, M. P. Ryan, L. F. Urrutia, F. Zertuche, eds. (World Scientific, Singapore). Google Scholar
Hawking, S. W. (1979). In_General Relativity: An Einstein Centenary Survey_, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge). Google Scholar
Meyer, D. A. (1992). “Spacetime Ising models,” UCSD preprint.
Banks, T., and O'Loughlin, M. (1991).Nucl Phys.B362, 649; Moore, G., Seiberg, N., and Staudacher, M. (1991).Nucl. Phys.B362, 665. Google Scholar
van Hove, L. (1950).Physica16, 137; Lieb, E. H., and Mattis, D. C. (1966).Mathematical Physics in One Dimension (Academic Press, London). Google Scholar
Thompson, C. J. (1972). In_Phase Transitions and Critical Phenomena. Vol. 1: Exact Results_, C. Domb and M. S. Green, eds. (Academic Press, London). Google Scholar