Why do clocks tick? (original) (raw)

References

  1. For example, see Witten, E. (1989).Commun. Math. Phys. 121, 351; Moore, G., and Seiberg, N. (1989).Commun. Math. Phys. 123, 177; Reshetikhin, N. Yu., and Turaev, V. G. (1991)Invent, math. 103, 547; Walker, K. (1991). “On Witten's 3-manifold invariants,” UCSD preprint.
    Google Scholar
  2. Witten, E. (1988).Commun. Math. Phys. 117, 353; (1988).Phys. Lett. 206B 601.
    Google Scholar
  3. Saint Augustine (1961).Confessions, transl., with an introduction by R. S. Pine-Coffin (Viking Penguin Inc., New York); parenthesized numbers refer to pages in this edition.
    Google Scholar
  4. Finkelstein, D. (1969).Phys. Rev. 184, 1261; Myrheim, J. (1978). “Statistical geometry,” CERN preprint TH-2538; 't Hooft, G. (1979). In_Recent developments in Gravitation, Cargèse 1978_, M. Lévy and S. Deser, eds., NATO AST Ser. B vol. 44, (Plenum Press, New York).
    Google Scholar
  5. Bombelli, L., Lee, J., Meyer, D., and Sorkin, R. D. (1987).Phys. Rev. Lett. 59, 521; Moore, C. (1988).Phys. Rev. Lett. 60, 655; Bombelli, L., Lee, J., Meyer, D., and Sorkin, R. D. (1988).Phys. Rev. Lett. 60, 656 (reply to C. Moore); Bombelli, L. (1987).Space-time as a causal set, Ph.D. thesis (physics), Syracuse University.
    Google Scholar
  6. For reviews see Witten, E. (1991). In_Surveys in Differential Geometry. (Proc, Conf. on Geometry and Topology, Harvard University 27–29 April 1990_, sponsored by Lehigh University), C. C. Hsiung and S. T. Yau, eds.,Suppl. to J. Diff. Geom. 1, 243; Klebanov, I. R. (1991). “String theory in two dimensions,” Princeton University preprint PUPT-1271, July 1991; Ginsparg, P. (1991). “Matrix models of 2d gravity,” LANL preprint LA-UR-91-9999 (December 1991).
  7. Riemann, G. F. B. (1919).Über die Hypothesen, welche der Geometrie zugrunde liegen, ed. H. Weyl (Springer-Verlag, Berlin).
    Google Scholar
  8. Hawking, S. W., King, A. R., and McCarthy, P. J. (1976).J. Math. Pliys. 17, 174; Malament, D. (1977).J. Math. Phys. 18 1399.
    Google Scholar
  9. Stanley, R. P. (1986).Enumerative Combinatorics, vol.I (Wadsworth & Brooks/Cole, Monterey).
    Google Scholar
  10. Meyer, D. A. (1988).The Dimension of Causal Sets, Ph.D. thesis (mathematics), M.I.T.; Bombelli, L., and Meyer, D. A. (1989).Phys. Lett. A141 226; Meyer, D. A., and Sorkin, R. D. (1993). “On poset completion,” in preparation; Bombelli, L., and Sorkin, R. D. (1993). “When are two Lorentzian metrics close?” in preparation.
  11. Sorkin, R. D. (1991). In_Proc. of IX Italian Conf. on General Relativity and Gravitational Physics, 24–29 September 1990, Capri_, R. Cianci, R. De Ritis, M. Francaviglia, G. Marmo, C. Rubano, and P. Scudellaro, eds. (World Scientific, Singapore); (1991). In_Relativity and Gravitation: Classical and Quantum (Proc. SILARG VII Conference, December 1990_, Mexico City (Cocoyoc), Mexico), J. C. D'Olivo, E. Nahmad-Achar, M. Rosenbaum, M. P. Ryan, L. F. Urrutia, F. Zertuche, eds. (World Scientific, Singapore).
    Google Scholar
  12. Hawking, S. W. (1979). In_General Relativity: An Einstein Centenary Survey_, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge).
    Google Scholar
  13. Meyer, D. A. (1992). “Spacetime Ising models,” UCSD preprint.
  14. Banks, T., and O'Loughlin, M. (1991).Nucl Phys. B362, 649; Moore, G., Seiberg, N., and Staudacher, M. (1991).Nucl. Phys. B362, 665.
    Google Scholar
  15. van Hove, L. (1950).Physica 16, 137; Lieb, E. H., and Mattis, D. C. (1966).Mathematical Physics in One Dimension (Academic Press, London).
    Google Scholar
  16. Thompson, C. J. (1972). In_Phase Transitions and Critical Phenomena. Vol. 1: Exact Results_, C. Domb and M. S. Green, eds. (Academic Press, London).
    Google Scholar

Download references