Localization and identification of catecholamines in the nervous system ofDiphyllobothrium dendriticum (Cestoda) (original) (raw)
- Anctil M (1989) The antiquity of monoaminergic neurotransmitters: evidence from Cnidaria. In: Anderson PAV (ed) Evolution of the first nervous system. Plenum Press, New York London, pp 141–155
Google Scholar - Bennett J, Bueding E (1971) Localization of biogenio amines in_Schistosoma mansoni_. Comp Biochem Physiol [A] 39:859–867
Google Scholar - Bennett J, Gianutsos G (1977) Distribution of catecholamines in immature_Fasciola hepatica_: a histochemical and biochemical study. Int J Parasitol 7:221–225
Google Scholar - Björklund A, Falck B, Owman Ch (1972) Fluorescence microscopic and microspectrofluormetric techniques for the cellular localization and characterization of biogenic amines. In: Rall JE, Kopin J (eds) Methods of investigative and diagnostic endocrinology. North Holland, Amsterdam, pp 318–368
Google Scholar - Carlberg M (1987) The biochemical conditions for monoaminergic neurotransmission in coelenterates. PhD Thesis, University of Lund, Sweden
Google Scholar - Eriksson B-M, Persson B-A (1982) Determination of catecholamines in the rat heart tissue and plasma samples by liquid chromatography with electrochemical detection. J Chromatogr 228:143–154
Google Scholar - Fairweather I, Maule AG, Mitchell SH, Johnston CF, Halton DW (1987) Immunocytochemical demonstration of 5-hydroxytryptamine (serotonin) in the nervous system of the liver fluke,Fasciola hepatica (Trematoda, Digenea). Parasitol Res 73:255–258
Google Scholar - Franquinet R, Catania R (1979) Localization histofluorimetrique et etude microspectrofluorimetrique de la serotonine et des catecholamines chez une Planarie entiere et en cours de regeneration. C R Acad Sci [D] 289:339–342
Google Scholar - Furness J, Costa M, Llewellyn-Smith I (1987) Localization of monoamines by aldehyde-induced fluorescence in the peripheral nervous system. In: Steinbusch H (ed) Monoaminergic neurons: light microscopy and ultrastructure. John Wiley & Sons, New York, pp 1–26
Google Scholar - Gerlo E, Malfait R, (1985) High-performance liquid chromatographic assay of free norepinephrine, epinephrine, dopamine, vanillymandelic acid and homovanillic acid. J Chromatogr 343:9–20
Google Scholar - Gianutsos G, Bennett JL (1977) The regional distribution of dopamine and norepinephrine in_Schistosoma mansoni_ and_Fasciola hepatica_. Comp Biochem Physiol [C] 58:157–159
Google Scholar - Gustafsson MKS (1984) Synapses in_Diphyllobothrium dendriticum_ (Cestoda). An electron microscopical study. Ann Zool Fenn 21:167–175
Google Scholar - Gustafsson MKS (1987) Immunocytochemical demonstration of neuropeptides and serotonin in the nervous system of adult_Schistosoma mansoni_. Parasitol Res 74:168–174
Google Scholar - Gustafsson MKS (1988) The nervous system of helminths. In: Mehlhorn H (ed) Parasitology in focus: facts and trends. Springer, Berlin Heidelberg New York, pp 295–310
Google Scholar - Gustafsson MKS (1990) The cells of a cestode,Diphyllobothrium dendriticum, as a model in cell biology. In: Gustafsson MKS, Reuter M (eds) The early brain. Proceedings of a symposium on invertebrate neurobiology. Acta Acad Aboensis [B] 50:13–44
- Gustafsson KMS, Wikgren MC (1981) Peptidergic and aminergic neurons in adult_Diphyllobothrium dendriticum_ Nitzsch, 1824 (Cestoda, Pseudophyllidea). Z Parasitenkd 64:121–134
Google Scholar - Gustafsson MKS, Wikgren MC (1989) Development of immunoreactivity to the invertebrate neuropeptide small cardiac peptide B in the tapeworm_Diphyllobothrium dendriticum_. Parasitol Res 75:396–400
Google Scholar - Gustafsson MKS, Wikgren MC, Karhi TJ, Schot LJP (1985) Immunocytochemical demonstration of neuropeptides and serotonin in the tapeworm_Diphyllobothrium dendriticum_. Cell Tissue Res 240:255–260
Google Scholar - Gustafsson MKS, Lehtonen MAI, Sundler F (1986) Immunocytochemical evidence for the presence of “mammalian” neurohormonal peptides in neurons of the tapeworm_Diphyllobothrium dendriticum_. Cell Tissue Res 243:41–49
Google Scholar - Halton DW, Maule AG, Johnston CF, Fairweather I (1987) Occurrence of 5-hydroxytryptamine (serotonin) in the nervous system of a monogenean,Diclidophora merlangi. Parasitol Res 74:151–154
Google Scholar - Hauser M, Koopowitz H (1987) Age-dependent changes in fluorescent neurons in the brain of_Notoplana acticola_, a polyclad flatworm. J Exp Zool 241:217–255
Google Scholar - Holmes SD, Fairweather I (1984)Fasciola hepatica: the effects of neuropharmacological agents upon in vitro motility. Exp Parasitol 58:194–208
Google Scholar - Mansour TE (1984) Serotonin receptors in parasitic worms. In: Baker JR, Muller R (eds) Advances in parasitology, vol 23. Academic Press, London, pp 1–36
Google Scholar - Marle J van (1989) Catecholamines, related compounds and the nervous system in the tentacles of some anthozoans. In: Anderson PAV (ed) Evolution of the first nervous system. Plenum Press, New York London, pp 129–140
Google Scholar - Maule AG, Halton DW, Allen JM, Fairweather I (1989) Studies on motility in vitro of an ectoparasitic monogenean,Diclidophora merlangi. Parasitology 98:85–93
Google Scholar - Öhman-James C (1968) Histochemical studies on the cestode_Diphyllobothrium dendriticum_ Nitzsch 1824. Z Parasitenkd 30:40–56
Google Scholar - Orido Y (1989) Histochemical evidence of the catecholamine-associated nervous system in certain schistosome cercariae. Parasitol Res 76:146–149
Google Scholar - Pax RA, Siefker C, Bennett JL (1984)Schistosoma mansoni: differences in acetylcholine, dopamine, and serotonin control of circular and longitudinal parasite muscles. Exp Parasitol 58:314–324
Google Scholar - Reuter M (1987) Immunocytochemical demonstration of serotonin and neuropeptides in the nervous system of_Gyrodactylus salaris_ (Monogenea). Acta Zool (Stockh) 68:187–193
Google Scholar - Reuter M (1988) Development and organization of nervous systems visualized by immunocytochemistry in three flatworm species. Prog Zool 36:181–184
Google Scholar - Reuter M, Eriksson K (1991) Catecholamines demonstrated by glyoxylic-acid-induced fluorescence and HPLC in some microturbellarians. Hydrobiologia (in press)
- Reuter M, Gustafsson MKS (1989) “Neuroendocrine cells” in flatworms-progenitors to metazoan neurons? Arch Histol Cytol 52:253–263
Google Scholar - Reuter M, Palmberg I (1989) Development and differentiation of neuronal subsets in asexually reproducing_Microstomum lineare_. Immunocytochemistry of 5-HT, RF-amide and SCPb. Histochemistry 91:31–40
Google Scholar - Reuter M, Wikgren M, Palmberg I (1986) Immunocytochemical demonstration of 5-HT-like and FMRF-amide-like substances in whole mounts of_Microstomum lineare_ (Turbellaria). Cell Tissue Res 246:7–12
Google Scholar - Ribeiro P, Webb RA (1983) The synthesis of 5-hydroxytryptamine from tryptophan and 5-hydroxytryptophan in the cestode_Hymenolepis diminuta_. Int J Parasitol 13:101–106
Google Scholar - Sharpe MJ, Atkinson HJ (1980) Improved visualization of dopaminergic neurons in nematodes using the glyoxylic acid fluorescence method. J Zool 190:273–284
Google Scholar - Smolen AJ (1988) Morphology of synapses in the autonomous nervous system. J Electron Microsc Tech 10:187–204
Google Scholar - Tiekotter KL (1988) Histofluorescent and ultrastructural identification of aminergic processes in the opisthaptor of the marine monogene_Microcotyle sebastis_ (Polyopistocotylea: Microcotylinea). Proc Helminthol Soc Wash 55:229–245
Google Scholar - Venturini G, Carolei A, Palladini G, Margotta V, Lauro MG (1983) Radioimmunological and immunocytochemical demonstration of metenkephalin in planaria. Comp Biochem Physiol [C] 74:23–25
Google Scholar - Wikgren M, Lindroos P (1989) Histamine and catecholamines in flatworms. Gen Comp Endocrinol 74(2):295–296
Google Scholar - Wikgren MC, Thorndyke MC (1990) An echinoderm neuropeptide in flatworms? In: Gustafsson MKS, Reuter M (eds) The early brain Proceedings of a symposium on invertebrate neurobiology. Acta Acad Aboensis [B] 50:45–52
- Wikgren M, Reuter, Gustafsson MKS, Lindroos P (1990) Immunocytochemical localization of histamine in flatworms. Cell Tissue Res 260:479–484
Google Scholar