Obesity as a major determinant of underreporting in a self-administered food frequency questionnaire: Results from the EPIC-Potsdam study (original) (raw)

Summary

The phenomenon of underreporting of dietary intake has been observed previously in many epidemiologic studies. In this study it was investigated whether dependencies exist between energy intake obtained by a semi-quantitative, self-administered food frequency questionnaire and lifestyle or anthropometric factors, particularly obesity.

The study population consisted of 2 531 subjects, men aged 40 to 64 years and women aged 35 to 64 years from the general population of Potsdam and the surrounding areas. First, subjects were allocated into quintiles of the ratio ‘reported energy intake (EI)’ to ‘calculated basal metabolic rate (BMR)’ as a measure of age and weight adjusted energy intake. No apparent dependencies between socio-economic variables and the ratio EI/BMR were observed. Among anthropometric variables, BMI and related measures of obesity were inversely related to the ratio EI/BMR in men and women. While dietary intake was directly related to the ratio EI/BMR in absolute quantities, energy adjusted intake of fat, protein, carbohydrate, and alcohol was found to be independent of this ratio. Energy adjusted food group consumption was also found to be independent of the ratio EI/BMR, showing only slightly increasing trends across quintiles of EI/BMR for cereals and fats, and a slightly decreasing trend for sweet foods in women. When subjects were classified into three categories of BMI, reported energy intake decreased across categories. Estimated energy expenditure based on BMR was increasing with BMI categories. A close direct relationship was observed between BMI categories and the difference between reported energy intake and estimated energy expenditure.

It is concluded that obesity is a major determinant of underreporting. Energy adjusted dietary variables were found to be largely independent of such methodological influences.

Zusammenfassung

Die Angaben zur Energie- und Nährstoffaufnahme aus einem semi-quantitativen Verzehrshäufigkeits-Fragebogen wurden auf eine mögliche Unterschätzung in Abhängigkeit vom relativen Körpergewicht untersucht. Die Studienpopulation bildeten 2 531 Personen aus Potsdam und den umliegenden Gemeinden, Männer im Alter von 40 bis 64 Jahren und Frauen im Alter von 35 bis 64 Jahren.

Das Verhältnis von Energieaufnahme (EI) zu Grundumsatz (BMR) diente als Maß für die alters- und gewichtsunabhängige relative Energieaufnahme. Die Studienteilnehmer wurden auf Basis des Parameters EI/BMR in Quintile eingeteilt. Zwischen dem body mass index (BMI) und dem Parameter EI/BMR konnte, bei Männern und Frauen, ein inverses Verhältnis beobachtet werden. Zwischen verschiedenen sozio-ökonomischen Variablen und EI/BMR zeigte sich dagegen kein Zusammenhang. Während die absolute Nährstoffaufnahme mit steigendem EI/BMR zunahm, war der energieadjustierte Verzehr von Fett, Protein, Kohlenhydraten und Alkohol unabhängig von der relativen Energieaufnahme. Der Verzehr aus Lebensmittelgruppen, ebenfalls energieadjustiert, zeigte bei Frauen einen leicht ansteigenden Trend über die EI/BMR-Quintile für die Gruppen, ‚Getreide‘ und ‘Fette’ sowie einen leicht abfallenden Trend für ‚Süßigkeiten‘. Nach Zuordnung der Meßwerte in drei BMI-Kategorien, zeigte sich, daß die angegebene Energieaufnahme mit zunehmendem BMI abnahm. Der auf Basis des BMR geschätzte Energieverbrauch stieg dagegen über die BMI-Kategorien an. Es konnte ein direkter Zusammenhang zwischen der Differenz von angegebener Energieaufnahme und geschätztem Energieverbrauch und dem relativen Körpergewicht beobachtet werden.

Die Ergebnisse zeigen, daß Übergewicht als ein wesentlicher Prädiktor für die Unterschätzung der Energieaufnahme gelten kann. Energieadjustierte Werte der Nährstoffaufnahme erscheinen unabhängig von dem methodischen Einfluß der Unterschätzung.

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballard-Barbash R, Graubard I, Krebs-Smith SM, Schatzkin A, Thompson FE (1996) Contribution of dieting to the inverse association between energy intake and body mass index. Eur J Clin Nutr 50:98–106
    CAS Google Scholar
  2. Bandini LG, Schoeller DA, Cyr HN, Dietz WH (1990) Validity of reported energy intake in obese and non-obese adolescents. Am J Clin Nutr 52: 421–5
    CAS Google Scholar
  3. Bingham SA (1994) The use of 24-urine samples and energy expenditure to validate dietary assessments. Am J Clin Nutr 59 (suppl.): 227S-31S
    CAS Google Scholar
  4. Black AE, Coward WA, Cole TJ, Prentice AM (1996) Human energy expenditure in affluent societies: an analysis of 574 doubly-labelled water measurements. Eur J Clin Nutr 50: 72–92
    CAS Google Scholar
  5. Boeing H, Bohlscheidt-Thomas S, Voss S, Schneeweiss S, Wahrendorf J (1997) The relative validity of vitamin intakes derived from a food frequency questionnaire compared to 24-hr-recalls and biological measurements. Results from the EPIC pilot study in Germany. Int J Epidemiol 26 (suppl. 1): S82-S90
    Article Google Scholar
  6. Bohlscheid-Thomas S, Hoting I, Boeing H, Wahrendorf J (1997) Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the German part of the EPIC-project. Int J Epidemiol 26 (suppl. 1): S59-S70
    Article Google Scholar
  7. Bohlscheid-Thomas S, Hoting I, Boeing H, Wahrendorf J (1997) Reproducibility and relative validity of energy and macronutrient intake of a food frequency questionnaire developed for the German part of the EPIC-project. Int J Epidemiol 26 (suppl. 1): S71-S81
    Article Google Scholar
  8. Callmer E, Riboli E, Saracci R, Akesson B, Lindgarde F (1993) Dietary assessment methods evaluated in the Malmö food study. J Intern Med 233: 53–7
    Article CAS Google Scholar
  9. Cunningham JJ (1980) A reanalysis of factors influencing basal metabolic rate in adults. Am J Clin Nutr 33: 2372–4
    CAS Google Scholar
  10. FAO/WHO/UNO (1985) Report of a joint expert consultation. Energy and protein requirements. WHO Tech. Rep. Series No. 724. Geneva: WHO
    Google Scholar
  11. Flegal KM, Larkin FA (1990) Partitioning macronutrient intake estimates from a food frequency questionnaire. Am J Epidemiol 131: 1046–58
    Article CAS Google Scholar
  12. Fricker J, Baelde D, Igoin-Apfelbaum L, Huet JM, Apfelbaum M (1992) Underreporting of food intake in obese ‘small eaters’. Appetite 19: 273–83
    Article CAS Google Scholar
  13. Goldberg GR, Black AE, Jebb SA, Cole TJ, Murgatroyd PR, Coward WA, Prentice AM (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr 45: 569–81
    CAS Google Scholar
  14. Goldbohm RA, Van den Brandt PA, Brants HAM, van't-Veer P, Al M, Sturmans F, Hermus RJ (1994) Validation of a dietary questionnaire used in a large scale prospective cohort study on diet and cancer. Eur J Clin Nutr 48: 253–65
    CAS Google Scholar
  15. Hulten B, Bengtsson C, Isaksson B (1990) Some errors inherent in a longitudinal dietary survey revealed by the urine nitrogen test. Eur J Clin Nutr 44 (3): 169–74
    CAS Google Scholar
  16. Johnson RK, Goran MI, Poehlman ET (1994) Correlates of over- and under-reporting of energy intake in healthy older men and women. Am J Clin Nutr 59: 1286–90
    CAS Google Scholar
  17. Klipstein-Grobusch K, Georg T, Boeing H (1997) Interviewer variability in anthropometric measurements and estimates of body composition. Int J Epidemiol 26 (suppl. 1), S174-S180
    Article Google Scholar
  18. Leibel RL, Rosenbaum M, Hirsch J (1995) Changes in energy expenditure resulting from altered body weight. N Engl J Med 332: 621–8
    Article CAS Google Scholar
  19. Lichtman SW, Pisarska K, Raynes Berman E, Pestone M, Dowling H, Offenbacher E, Weisel H, Heshkas S, Matthews DE, Heymsfield SB (1992) Discrepancy between self-reported and actual caloric intake and exercise in obese subjects. N Engl J Med 327: 1893–8
    Article CAS Google Scholar
  20. Lilienthal Heitmann B (1993) The influence of fatness, weight change, slimming history and other lifestyle variables on diet reporting in Danish men and women aged 35–65 years. Int J Obes 17: 329–36
    Google Scholar
  21. Lindroos A-K, Lissner L, Sjöström L (1993) Validity and reproducibility of a self-administered dietary questionnaire in obese and non-obese subjects. Eur J Clin Nutr 47: 461–81
    CAS Google Scholar
  22. Longnecker MP, Lissner L, Holden JM, Flack VF, Taylor PR, Stampfer MJ, Willett WC (1993) The reproducibility and validity of a self-administered semiquantitative food frequency questionnaire in subjects from South Dakota and Wyoming. Epidemiol 4: 356–65
    Article CAS Google Scholar
  23. Martin-Moreno JM, Boyle P, Gorgojo L, Maisonneuve P, Fernandez-Rodrigucz JC, Salvini S, Willett WC (1993) Development and validation of a food frequency in Spain. Int J Epidemiol 22: 512–9
    Article CAS Google Scholar
  24. Polensky W in Zusammenarbeit mit dem Bundesgesundheitsamt, Institut für Sozialmedizin und Epidemiologie (1989) Die Bundeslebensmittelschlüsseldokumentation, Version II.1
  25. Prentice AM, Black AE, Coward WA, Cole TJ (1996) Energy intake in over-weight and obese adults in affluent societies: an analysis of 319 doubly-labelled water measurements. Eur J Clin Nutr 50: 93–7
    CAS Google Scholar
  26. Ravussin E, Swinburn BA (1992) Pathopysiology of obesity. Lancet 340: 404–8
    Article CAS Google Scholar
  27. Riboli E (1992) Nutrition and cancer background and rationale of the European Prospective Investigation into Cancer and Nutrition (EPIC). Annals of Oncology 3: 783–91
    Article CAS Google Scholar
  28. Romieu I, Willett WC, Stampfer MJ, Colditz GA, Sampson L, Rosner B, Hennekens CH, Speizer FE (1988) Energy intake and other determinants of relative weight. Am J Clin Nutr 47: 406–12
    CAS Google Scholar
  29. SAS Institute, Inc (1982) SAS User's Guide to Statistics. SAS Institute, Inc, Cary, NC
    Google Scholar
  30. Schofield WN, Schofield C, James WPT (1985) Basal metabolic rate. Human Nutr: Clin Nutr 39C (suppl. 1): 1–96
    Google Scholar
  31. Shetty PS, Henry CJK, Black AE, Prentice AM (1996) Energy requirements of adults: an update on basal metabolic rates (BMRs) and physical activity levels (PALs). Eur J Clin Nutr 50 (suppl 1): S11-S23
    Google Scholar
  32. de Vries JH, Zock PL, Mensink RP, Katan MB (1994) Underestimation of energy intake by 3-d records compared with energy intake to maintain body weight in 269 nonobese adults. Am J Clin Nutr 60 (6): 855–60
    Google Scholar
  33. Willett WC, Stampfer MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124 (1): 17–27
    Article CAS Google Scholar
  34. Willett WC, Reynolds RD, Cottrell-Hoehner S, Sampson L, Browne ML (1987) Validation of a semi-quantitative food frequency questionnaire: comparison with a 1-year diet record. J Am Diet Assoc 87: 43–7
    CAS Google Scholar
  35. Willett WC (1990) Reproducibility and validity of food-frequency questionnaires. In: Nutritional epidemiology Willett WC (ed.) Oxford University Press: New York/Oxford, pp 92–126
    Google Scholar
  36. Willett WC (1994) Future directions in the development of food-frequency questionnaires. Am J Clin Nutr 59 (suppl): 171S-4S
    CAS Google Scholar
  37. Womersley J, Durnin JVGA (1973) An experimental study on the variability of measurements of skinfold thickness in young adults. Hum Biology 45: 281–8
    CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. German Institute of Human Nutrition Potsdam-Rehbrücke, Unit of Medical Epidemiology, 14558, Bergholz-Rehbrücke
    S. Voss, A. Kroke, K. Klipstein-Grobusch & H. Boeing

Authors

  1. S. Voss
    You can also search for this author inPubMed Google Scholar
  2. A. Kroke
    You can also search for this author inPubMed Google Scholar
  3. K. Klipstein-Grobusch
    You can also search for this author inPubMed Google Scholar
  4. H. Boeing
    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to H. Boeing.

Rights and permissions

About this article

Cite this article

Voss, S., Kroke, A., Klipstein-Grobusch, K. et al. Obesity as a major determinant of underreporting in a self-administered food frequency questionnaire: Results from the EPIC-Potsdam study.Z Ernährungswiss 36, 229–236 (1997). https://doi.org/10.1007/BF01623369

Download citation

Key words

Schlüsselwörter