Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG (2011) Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med 17(1–2):113–125. doi:10.2119/molmed.2009.00153 PubMed CentralCASPubMed Google Scholar
Qi W, Chen X, Holian J, Mreich E, Twigg S, Gilbert RE, Pollock CA (2006) Transforming growth factor-beta1 differentially mediates fibronectin and inflammatory cytokine expression in kidney tubular cells. Am J Physiol Renal Physiol 291(5):F1070–F1077. doi:10.1152/ajprenal.00013.2006 ArticleCASPubMed Google Scholar
Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC (2013) Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol 10(1):15–26. doi:10.1038/nrcardio.2012.158 ArticleCASPubMed Google Scholar
Dulauroy S, Di Carlo SE, Langa F, Eberl G, Peduto L (2012) Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med 18(8):1262–1270. doi:10.1038/nm.2848 ArticleCASPubMed Google Scholar
Castelino FV, Varga J (2014) Emerging cellular and molecular targets in fibrosis: implications for scleroderma pathogenesis and targeted therapy. Curr Opin Rheumatol 26(6):607–614. doi:10.1097/BOR.0000000000000110 ArticleCASPubMed Google Scholar
Tsujino T, Seshimo I, Yamamoto H, Ngan CY, Ezumi K, Takemasa I, Ikeda M, Sekimoto M, Matsuura N, Monden M (2007) Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin Cancer Res 13(7):2082–2090. doi:10.1158/1078-0432.CCR-06-2191 ArticleCASPubMed Google Scholar
Carrel A, Hartmann A (1916) Cicatrization of wounds: I. The relation between the size of a wound and the rate of its cicatrization. J Exp Med 24(5):429–450 ArticlePubMed CentralCASPubMed Google Scholar
Abercrombie M, Flint M, James D (1954) Collagen formation and wound contraction during repair of small excised wounds in the skin of rats. J Embryol Exp Morphol 2:264–274 Google Scholar
Billingham RE, Russell PS (1956) Studies on wound healing, with special reference to the phenomenon of contracture in experimental wounds in rabbits’ skin. Ann Surg 144(6):961–981 ArticlePubMed CentralCASPubMed Google Scholar
Watts GT, Grillo HC, Gross J (1958) Studies in wound healing: II. The role of granulation tissue in contraction. Ann Surg 148(2):153–160 ArticlePubMed CentralCASPubMed Google Scholar
Gabbiani G, Ryan GB, Majno G (1971) Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27(5):549–550 ArticleCASPubMed Google Scholar
Darby I, Skalli O, Gabbiani G (1990) Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 63(1):21–29 CASPubMed Google Scholar
Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363. doi:10.1038/nrm809 ArticleCASPubMed Google Scholar
Benzonana G, Skalli O, Gabbiani G (1988) Correlation between the distribution of smooth muscle or non muscle myosins and alpha-smooth muscle actin in normal and pathological soft tissues. Cell Motil Cytoskelet 11(4):260–274. doi:10.1002/cm.970110405 ArticleCAS Google Scholar
van der Loop FT, Schaart G, Timmer ED, Ramaekers FC, van Eys GJ (1996) Smoothelin, a novel cytoskeletal protein specific for smooth muscle cells. J Cell Biol 134(2):401–411 ArticlePubMed Google Scholar
Eyden B (2005) The myofibroblast: a study of normal, reactive and neoplastic tissues, with an emphasis on ultrastructure. J Submicrosc Cytol Pathol 37:109–204 CASPubMed Google Scholar
Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G (1986) A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103(6 Pt 2):2787–2796 ArticleCASPubMed Google Scholar
Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, Neilson EG (1995) Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130(2):393–405 ArticleCASPubMed Google Scholar
Zeisberg M, Kalluri R (2008) Fibroblasts emerge via epithelial-mesenchymal transition in chronic kidney fibrosis. Front Biosci 13:6991–6998 ArticleCASPubMed Google Scholar
Chilosi M, Poletti V, Zamo A, Lestani M, Montagna L, Piccoli P, Pedron S, Bertaso M, Scarpa A, Murer B, Cancellieri A, Maestro R, Semenzato G, Doglioni C (2003) Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 162(5):1495–1502 ArticlePubMed CentralCASPubMed Google Scholar
Ng YY, Huang TP, Yang WC, Chen ZP, Yang AH, Mu W, Nikolic-Paterson DJ, Atkins RC, Lan HY (1998) Tubular epithelial-myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney Int 54(3):864–876. doi:10.1046/j.1523-1755.1998.00076.x ArticleCASPubMed Google Scholar
Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, Pradere JP, Schwabe RF (2013) Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 4:2823. doi:10.1038/ncomms3823 ArticlePubMed CentralPubMedCAS Google Scholar
Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176(1):85–97. doi:10.2353/ajpath.2010.090517 ArticlePubMed CentralCASPubMed Google Scholar
Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122(1):103–111 ArticleCASPubMed Google Scholar
Ronnov-Jessen L, Petersen OW (1993) Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest 68(6):696–707 CASPubMed Google Scholar
Shinde AV, Kelsh R, Peters JH, Sekiguchi K, Van De Water L, McKeown-Longo PJ (2015) The alpha4beta1 integrin and the EDA domain of fibronectin regulate a profibrotic phenotype in dermal fibroblasts. Matrix Biol 41:26–35. doi:10.1016/j.matbio.2014.11.004 ArticlePubMed CentralCASPubMed Google Scholar
Desmouliere A, Rubbia-Brandt L, Grau G, Gabbiani G (1992) Heparin induces alpha-smooth muscle actin expression in cultured fibroblasts and in granulation tissue myofibroblasts. Lab Invest 67(6):716–726 CASPubMed Google Scholar
Rubbia-Brandt L, Sappino AP, Gabbiani G (1991) Locally applied GM-CSF induces the accumulation of alpha-smooth muscle actin containing myofibroblasts. Virchows Arch B Cell Pathol Incl Mol Pathol 60(2):73–82 ArticleCASPubMed Google Scholar
Chen YT, Chang FC, Wu CF, Chou YH, Hsu HL, Chiang WC, Shen J, Chen YM, Wu KD, Tsai TJ, Duffield JS, Lin SL (2011) Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int 80(11):1170–1181. doi:10.1038/ki.2011.208 ArticleCASPubMed Google Scholar
Wollin L, Maillet I, Quesniaux V, Holweg A, Ryffel B (2014) Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J Pharmacol Exp Ther 349(2):209–220. doi:10.1124/jpet.113.208223 ArticlePubMedCAS Google Scholar
Bostrom H, Willetts K, Pekny M, Leveen P, Lindahl P, Hedstrand H, Pekna M, Hellstrom M, Gebre-Medhin S, Schalling M, Nilsson M, Kurland S, Tornell J, Heath JK, Betsholtz C (1996) PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85(6):863–873 ArticleCASPubMed Google Scholar
Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277(5323):242–245 ArticleCASPubMed Google Scholar
Sun G, Stacey MA, Bellini A, Marini M, Mattoli S (1997) Endothelin-1 induces bronchial myofibroblast differentiation. Peptides 18(9):1449–1451 ArticleCASPubMed Google Scholar
Campbell SE, Katwa LC (1997) Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol 29(7):1947–1958. doi:10.1006/jmcc.1997.0435 ArticleCASPubMed Google Scholar
Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, Sorescu D (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97(9):900–907. doi:10.1161/01.RES.0000187457.24338.3D ArticleCASPubMed Google Scholar
Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ, Thannickal VJ (2009) NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15(9):1077–1081. doi:10.1038/nm.2005 ArticlePubMed CentralCASPubMed Google Scholar
Matsuzaki S, Hiratsuka T, Taniguchi M, Shingaki K, Kubo T, Kiya K, Fujiwara T, Kanazawa S, Kanematsu R, Maeda T, Takamura H, Yamada K, Miyoshi K, Hosokawa K, Tohyama M, Katayama T (2015) Physiological ER stress mediates the differentiation of fibroblasts. PLoS One 10(4):e0123578. doi:10.1371/journal.pone.0123578 ArticlePubMed CentralPubMedCAS Google Scholar
Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, Kaminski N, Abraham E (2010) miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 207(8):1589–1597. doi:10.1084/jem.20100035 ArticlePubMed CentralCASPubMed Google Scholar
Gong C, Nie Y, Qu S, Liao JY, Cui X, Yao H, Zeng Y, Su F, Song E, Liu Q (2014) miR-21 induces myofibroblast differentiation and promotes the malignant progression of breast phyllodes tumors. Cancer Res 74(16):4341–4352. doi:10.1158/0008-5472.CAN-14-0125 ArticleCASPubMed Google Scholar
McClelland AD, Herman-Edelstein M, Komers R, Jha JC, Winbanks CE, Hagiwara S, Gregorevic P, Kantharidis P, Cooper ME (2015) miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin Sci Lond. doi:10.1042/CS20150427 PubMed Google Scholar
Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, Janssen J, Koppe C, Knolle P, Castoldi M, Tacke F, Trautwein C, Luedde T (2011) Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 53(1):209–218. doi:10.1002/hep.23922 ArticleCASPubMed Google Scholar
Vedrenne N, Coulomb B, Danigo A, Bonte F, Desmouliere A (2012) The complex dialogue between (myo)fibroblasts and the extracellular matrix during skin repair processes and ageing. Pathol Biol (Paris) 60(1):20–27. doi:10.1016/j.patbio.2011.10.002 ArticleCAS Google Scholar
Achterberg VF, Buscemi L, Diekmann H, Smith-Clerc J, Schwengler H, Meister JJ, Wenck H, Gallinat S, Hinz B (2014) The nano-scale mechanical properties of the extracellular matrix regulate dermal fibroblast function. J Invest Dermatol 134(7):1862–1872. doi:10.1038/jid.2014.90 ArticleCASPubMed Google Scholar
Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskelet 60(1):24–34. doi:10.1002/cm.20041 Article Google Scholar
Ng CP, Hinz B, Swartz MA (2005) Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J Cell Sci 118(Pt 20):4731–4739. doi:10.1242/jcs.02605 ArticleCASPubMed Google Scholar
Klingberg F, Chow ML, Koehler A, Boo S, Buscemi L, Quinn TM, Costell M, Alman BA, Genot E, Hinz B (2014) Prestress in the extracellular matrix sensitizes latent TGF-beta1 for activation. J Cell Biol 207(2):283–297. doi:10.1083/jcb.201402006 ArticlePubMed CentralCASPubMed Google Scholar
Goffin JM, Pittet P, Csucs G, Lussi JW, Meister JJ, Hinz B (2006) Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J Cell Biol 172(2):259–268. doi:10.1083/jcb.200506179 ArticlePubMed CentralCASPubMed Google Scholar
Aarabi S, Bhatt KA, Shi Y, Paterno J, Chang EI, Loh SA, Holmes JW, Longaker MT, Yee H, Gurtner GC (2007) Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J 21(12):3250–3261. doi:10.1096/fj.07-8218com ArticleCASPubMed Google Scholar
Grinnell F, Ho CH, Lin YC, Skuta G (1999) Differences in the regulation of fibroblast contraction of floating versus stressed collagen matrices. J Biol Chem 274(2):918–923 ArticleCASPubMed Google Scholar
Acerbi I, Cassereau L, Dean I, Shi Q, Au A, Park C, Chen YY, Liphardt J, Hwang ES, Weaver VM (2015) Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol Camb. doi:10.1039/c5ib00040h PubMed CentralPubMed Google Scholar
Darby IA, Vuillier-Devillers K, Pinault E, Sarrazy V, Lepreux S, Balabaud C, Bioulac-Sage P, Desmouliere A (2010) Proteomic analysis of differentially expressed proteins in peripheral cholangiocarcinoma. Cancer Microenviron 4(1):73–91. doi:10.1007/s12307-010-0047-2 ArticlePubMed CentralPubMedCAS Google Scholar
Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF, Huelsken J (2012) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481(7379):85–89. doi:10.1038/nature10694 ArticleCAS Google Scholar
Wang J, Chen H, Seth A, McCulloch CA (2003) Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. Am J Physiol Heart Circ Physiol 285(5):H1871–H1881. doi:10.1152/ajpheart.00387.2003 ArticleCASPubMed Google Scholar
Buscemi L, Ramonet D, Klingberg F, Formey A, Smith-Clerc J, Meister JJ, Hinz B (2011) The single-molecule mechanics of the latent TGF-beta1 complex. Curr Biol 21(24):2046–2054. doi:10.1016/j.cub.2011.11.037 ArticleCASPubMed Google Scholar
Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14(2):163–176 PubMed CentralPubMed Google Scholar
Schultz-Cherry S, Murphy-Ullrich JE (1993) Thrombospondin causes activation of latent transforming growth factor-beta secreted by endothelial cells by a novel mechanism. J Cell Biol 122(4):923–932 ArticleCASPubMed Google Scholar
Ibrahim MM, Chen L, Bond JE, Medina MA, Ren L, Kokosis G, Selim AM, Levinson H (2015) Myofibroblasts contribute to but are not necessary for wound contraction. Lab Invest. doi:10.1038/labinvest.2015.116 PubMed Google Scholar
Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M (2006) Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol Rev 86(4):1309–1379. doi:10.1152/physrev.00026.2005 ArticleCASPubMed Google Scholar
Palazzo E, Marconi A, Truzzi F, Dallaglio K, Petrachi T, Humbert P, Schnebert S, Perrier E, Dumas M, Pincelli C (2012) Role of neurotrophins on dermal fibroblast survival and differentiation. J Cell Physiol 227(3):1017–1025. doi:10.1002/jcp.22811 ArticleCASPubMed Google Scholar
Botchkarev VA, Yaar M, Peters EM, Raychaudhuri SP, Botchkareva NV, Marconi A, Raychaudhuri SK, Paus R, Pincelli C (2006) Neurotrophins in skin biology and pathology. J Invest Dermatol 126(8):1719–1727. doi:10.1038/sj.jid.5700270 ArticleCASPubMed Google Scholar
Cheret J, Lebonvallet N, Buhe V, Carre JL, Misery L, Le Gall-Ianotto C (2014) Influence of sensory neuropeptides on human cutaneous wound healing process. J Dermatol Sci 74(3):193–203. doi:10.1016/j.jdermsci.2014.02.001 ArticleCASPubMed Google Scholar
Kant V, Gopal A, Kumar D, Bag S, Kurade NP, Kumar A, Tandan SK, Kumar D (2013) Topically applied substance P enhanced healing of open excision wound in rats. Eur J Pharmacol 715(1–3):345–353. doi:10.1016/j.ejphar.2013.04.042 ArticleCASPubMed Google Scholar
Khalil Z, Helme R (1996) Sensory peptides as neuromodulators of wound healing in aged rats. J Gerontol A Biol Sci Med Sci 51(5):B354–B361 ArticleCASPubMed Google Scholar
Kant V, Kumar D, Kumar D, Prasad R, Gopal A, Pathak NN, Kumar P, Tandan SK (2015) Topical application of substance P promotes wound healing in streptozotocin-induced diabetic rats. Cytokine 73(1):144–155. doi:10.1016/j.cyto.2014.12.015 ArticleCASPubMed Google Scholar
Liu M, Warn JD, Fan Q, Smith PG (1999) Relationships between nerves and myofibroblasts during cutaneous wound healing in the developing rat. Cell Tissue Res 297(3):423–433 ArticleCASPubMed Google Scholar
Fujiwara T, Kubo T, Kanazawa S, Shingaki K, Taniguchi M, Matsuzaki S, Gurtner GC, Tohyama M, Hosokawa K (2013) Direct contact of fibroblasts with neuronal processes promotes differentiation to myofibroblasts and induces contraction of collagen matrix in vitro. Wound Repair Regen 21(4):588–594. doi:10.1111/wrr.12059 ArticlePubMed Google Scholar
Souza BR, Cardoso JF, Amadeu TP, Desmouliere A, Costa AM (2005) Sympathetic denervation accelerates wound contraction but delays reepithelialization in rats. Wound Repair Regen 13(5):498–505. doi:10.1111/j.1067-1927.2005.00070.x ArticlePubMed Google Scholar
Dubuisson L, Desmouliere A, Decourt B, Evade L, Bedin C, Boussarie L, Barrier L, Vidaud M, Rosenbaum J (2002) Inhibition of rat liver fibrogenesis through noradrenergic antagonism. Hepatology 35(2):325–331. doi:10.1053/jhep.2002.31166 ArticleCASPubMed Google Scholar
Oben JA, Yang S, Lin H, Ono M, Diehl AM (2003) Acetylcholine promotes the proliferation and collagen gene expression of myofibroblastic hepatic stellate cells. Biochem Biophys Res Commun 300(1):172–177 ArticleCASPubMed Google Scholar
Lam HB, Yeh CH, Cheng KC, Hsu CT, Cheng JT (2008) Effect of cholinergic denervation on hepatic fibrosis induced by carbon tetrachloride in rats. Neurosci Lett 438(1):90–95. doi:10.1016/j.neulet.2008.04.048 ArticleCASPubMed Google Scholar
Ehrlich HP, Desmouliere A, Diegelmann RF, Cohen IK, Compton CC, Garner WL, Kapanci Y, Gabbiani G (1994) Morphological and immunochemical differences between keloid and hypertrophic scar. Am J Pathol 145(1):105–113 PubMed CentralCASPubMed Google Scholar
Lee JY, Yang CC, Chao SC, Wong TW (2004) Histopathological differential diagnosis of keloid and hypertrophic scar. Am J Dermatopathol 26(5):379–384 ArticlePubMed Google Scholar
Lee SS, Yosipovitch G, Chan YH, Goh CL (2004) Pruritus, pain, and small nerve fiber function in keloids: a controlled study. J Am Acad Dermatol 51(6):1002–1006. doi:10.1016/j.jaad.2004.07.054 ArticlePubMed Google Scholar
Hamed K, Giles N, Anderson J, Phillips JK, Dawson LF, Drummond P, Wallace H, Wood FM, Rea SM, Fear MW (2011) Changes in cutaneous innervation in patients with chronic pain after burns. Burns 37(4):631–637. doi:10.1016/j.burns.2010.11.010 ArticlePubMed Google Scholar
Crowe R, Parkhouse N, McGrouther D, Burnstock G (1994) Neuropeptide-containing nerves in painful hypertrophic human scar tissue. Br J Dermatol 130(4):444–452 ArticleCASPubMed Google Scholar
Kisseleva T, Cong M, Paik Y, Scholten D, Jiang C, Benner C, Iwaisako K, Moore-Morris T, Scott B, Tsukamoto H, Evans SM, Dillmann W, Glass CK, Brenner DA (2012) Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci USA 109(24):9448–9453. doi:10.1073/pnas.1201840109 ArticlePubMed CentralCASPubMed Google Scholar
Talele NP, Fradette J, Davies JE, Kapus A, Hinz B (2015) Expression of alpha-smooth muscle actin determines the fate of mesenchymal stromal cells. Stem Cell Rep 4(6):1016–1030. doi:10.1016/j.stemcr.2015.05.004 ArticleCAS Google Scholar
van der Slot AJ, Zuurmond AM, van den Bogaerdt AJ, Ulrich MM, Middelkoop E, Boers W, Karel Ronday H, DeGroot J, Huizinga TW, Bank RA (2004) Increased formation of pyridinoline cross-links due to higher telopeptide lysyl hydroxylase levels is a general fibrotic phenomenon. Matrix Biol 23(4):251–257. doi:10.1016/j.matbio.2004.06.001 ArticlePubMedCAS Google Scholar
Pittet B, Rubbia-Brandt L, Desmouliere A, Sappino AP, Roggero P, Guerret S, Grimaud JA, Lacher R, Montandon D, Gabbiani G (1994) Effect of gamma-interferon on the clinical and biologic evolution of hypertrophic scars and Dupuytren’s disease: an open pilot study. Plast Reconstr Surg 93(6):1224–1235 ArticleCASPubMed Google Scholar
Jiang D, Liang J, Campanella GS, Guo R, Yu S, Xie T, Liu N, Jung Y, Homer R, Meltzer EB, Li Y, Tager AM, Goetinck PF, Luster AD, Noble PW (2010) Inhibition of pulmonary fibrosis in mice by CXCL10 requires glycosaminoglycan binding and syndecan-4. J Clin Invest 120(6):2049–2057. doi:10.1172/JCI38644 ArticlePubMed CentralCASPubMed Google Scholar
Park SA, Kim MJ, Park SY, Kim JS, Lee SJ, Woo HA, Kim DK, Nam JS, Sheen YY (2015) EW-7197 inhibits hepatic, renal, and pulmonary fibrosis by blocking TGF-beta/Smad and ROS signaling. Cell Mol Life Sci 72(10):2023–2039. doi:10.1007/s00018-014-1798-6 ArticleCASPubMed Google Scholar
Conte E, Gili E, Fagone E, Fruciano M, Iemmolo M, Vancheri C (2014) Effect of pirfenidone on proliferation, TGF-beta-induced myofibroblast differentiation and fibrogenic activity of primary human lung fibroblasts. Eur J Pharm Sci 58:13–19. doi:10.1016/j.ejps.2014.02.014 ArticleCASPubMed Google Scholar
Liu S, Parapuram SK, Leask A (2013) Fibrosis caused by loss of PTEN expression in mouse fibroblasts is crucially dependent on CCN2. Arthr Rheum 65(11):2940–2944. doi:10.1002/art.38121 ArticleCAS Google Scholar
Gong W, Yan M, Chen J, Chaugai S, Chen C, Wang D (2014) Chronic inhibition of cyclic guanosine monophosphate-specific phosphodiesterase 5 prevented cardiac fibrosis through inhibition of transforming growth factor beta-induced Smad signaling. Front Med 8(4):445–455. doi:10.1007/s11684-014-0378-3 ArticlePubMed Google Scholar
Sassoli C, Chellini F, Pini A, Tani A, Nistri S, Nosi D, Zecchi-Orlandini S, Bani D, Formigli L (2013) Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated inhibition of TGF-beta/Smad3 signaling. PLoS One 8(5):e63896. doi:10.1371/journal.pone.0063896 ArticlePubMed CentralPubMed Google Scholar
Sandbo N, Lau A, Kach J, Ngam C, Yau D, Dulin NO (2011) Delayed stress fiber formation mediates pulmonary myofibroblast differentiation in response to TGF-beta. Am J Physiol Lung Cell Mol Physiol 301(5):L656–L666. doi:10.1152/ajplung.00166.2011 ArticlePubMed CentralCASPubMed Google Scholar
Asano Y, Ihn H, Yamane K, Jinnin M, Tamaki K (2006) Increased expression of integrin alphavbeta5 induces the myofibroblastic differentiation of dermal fibroblasts. Am J Pathol 168(2):499–510 ArticlePubMed CentralCASPubMed Google Scholar
Zhou Y, Hagood JS, Lu B, Merryman WD, Murphy-Ullrich JE (2010) Thy-1-integrin alphav beta5 interactions inhibit lung fibroblast contraction-induced latent transforming growth factor-beta1 activation and myofibroblast differentiation. J Biol Chem 285(29):22382–22393. doi:10.1074/jbc.M110.126227 ArticlePubMed CentralCASPubMed Google Scholar
Kim KK, Wei Y, Szekeres C, Kugler MC, Wolters PJ, Hill ML, Frank JA, Brumwell AN, Wheeler SE, Kreidberg JA, Chapman HA (2009) Epithelial cell alpha3beta1 integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis. J Clin Invest 119(1):213–224. doi:10.1172/JCI36940 PubMed CentralCASPubMed Google Scholar
Carracedo S, Lu N, Popova SN, Jonsson R, Eckes B, Gullberg D (2010) The fibroblast integrin alpha11beta1 is induced in a mechanosensitive manner involving activin A and regulates myofibroblast differentiation. J Biol Chem 285(14):10434–10445. doi:10.1074/jbc.M109.078766 ArticlePubMed CentralCASPubMed Google Scholar
Horan GS, Wood S, Ona V, Li DJ, Lukashev ME, Weinreb PH, Simon KJ, Hahm K, Allaire NE, Rinaldi NJ, Goyal J, Feghali-Bostwick CA, Matteson EL, O’Hara C, Lafyatis R, Davis GS, Huang X, Sheppard D, Violette SM (2008) Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. Am J Respir Crit Care Med 177(1):56–65. doi:10.1164/rccm.200706-805OC ArticleCASPubMed Google Scholar
Lagares D, Busnadiego O, Garcia-Fernandez RA, Kapoor M, Liu S, Carter DE, Abraham D, Shi-Wen X, Carreira P, Fontaine BA, Shea BS, Tager AM, Leask A, Lamas S, Rodriguez-Pascual F (2012) Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation. Arthr Rheum 64(5):1653–1664. doi:10.1002/art.33482 ArticleCAS Google Scholar
Rangarajan S, Kurundkar A, Kurundkar D, Bernard K, Sanders YY, Ding Q, Antony VB, Zhang J, Zmijewski J, Thannickal VJ (2015) Novel mechanisms for the anti-fibrotic action of nintedanib. Am J Respir Cell Mol Biol. doi:10.1165/rcmb.2014-0445OC PubMed Google Scholar
Desmouliere A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146(1):56–66 PubMed CentralCASPubMed Google Scholar
Coulomb B, Friteau L, Baruch J, Guilbaud J, Chretien-Marquet B, Glicenstein J, Lebreton-Decoster C, Bell E, Dubertret L (1998) Advantage of the presence of living dermal fibroblasts within in vitro reconstructed skin for grafting in humans. Plast Reconstr Surg 101(7):1891–1903 ArticleCASPubMed Google Scholar
Chaussain Miller C, Septier D, Bonnefoix M, Lecolle S, Lebreton-Decoster C, Coulomb B, Pellat B, Godeau G (2002) Human dermal and gingival fibroblasts in a three-dimensional culture: a comparative study on matrix remodeling. Clin Oral Investig 6(1):39–50 CASPubMed Google Scholar
Modarressi A, Pietramaggiori G, Godbout C, Vigato E, Pittet B, Hinz B (2010) Hypoxia impairs skin myofibroblast differentiation and function. J Invest Dermatol 130(12):2818–2827. doi:10.1038/jid.2010.224 ArticleCASPubMed Google Scholar
Follonier L, Schaub S, Meister JJ, Hinz B (2008) Myofibroblast communication is controlled by intercellular mechanical coupling. J Cell Sci 121(Pt 20):3305–3316. doi:10.1242/jcs.024521 ArticleCASPubMed Google Scholar
Follonier Castella L, Gabbiani G, McCulloch CA, Hinz B (2010) Regulation of myofibroblast activities: calcium pulls some strings behind the scene. Exp Cell Res 316(15):2390–2401. doi:10.1016/j.yexcr.2010.04.033 ArticleCASPubMed Google Scholar