Regulation of the immune response by soybean isoflavones (original) (raw)
Munro IC, Harwood M, Hlywka JJ, Stephen AM, Doull J, Flamm WG, Adlercreutz H. Soy isoflavones: a safety review. Nutr Rev. 2003;61(1):1–33. PubMed Google Scholar
Hendrich S. Bioavailability of isoflavones. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;777(1–2):203–10. CASPubMed Google Scholar
Nagata C. Ecological study of the association between soy product intake and mortality from cancer and heart disease in Japan. Int J Epidemiol. 2000;29(5):832–6. CASPubMed Google Scholar
Zhang X, Shu XO, Gao YT, Yang G, Li Q, Li H, Jin F, Zheng W. Soy food consumption is associated with lower risk of coronary heart disease in Chinese women. J Nutr. 2003;133(9):2874–8. CASPubMed Google Scholar
Kurahashi N, Iwasaki M, Sasazuki S, Otani T, Inoue M, Tsugane S. Soy product and isoflavone consumption in relation to prostate cancer in Japanese men. Cancer Epidemiol Biomarkers Prev. 2007;16(3):538–45. CASPubMed Google Scholar
Wu AH, Ziegler RG, Horn-Ross PL, Nomura AM, West DW, Kolonel LN, Rosenthal JF, Hoover RN, Pike MC. Tofu and risk of breast cancer in Asian-Americans. Cancer Epidemiol Biomarkers Prev. 1996;5(11):901–6. CASPubMed Google Scholar
Barnes S, Prasain J, D'Alessandro T, Arabshahi A, Botting N, Lila MA, Jackson G, Janle EM, Weaver CM. The metabolism and analysis of isoflavones and other dietary polyphenols in foods and biological systems. Food Function. 2011;2(5):235–44. CASPubMed Google Scholar
Barnes S. The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphat Res Biol. 2010;8(1):89–98. CASPubMed Google Scholar
Murphy PA, Barua K, Hauck CC. Solvent extraction selection in the determination of isoflavones in soy foods. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;777(1–2):129–38. CASPubMed Google Scholar
Wang H, Murphy PA. Isoflavone content in commercial soybean foods. J Agric Food Chem. 1994;42(8):1666–73. CAS Google Scholar
Ye Z, Renouf M, Lee SO, Hauck CC, Murphy PA, Hendrich S. High urinary isoflavone excretion phenotype decreases plasma cholesterol in golden Syrian hamsters fed soy protein. J Nutr. 2006;136(11):2773–8. CASPubMed Google Scholar
Lee SO, Renouf M, Ye Z, Murphy PA, Hendrich S. Isoflavone glycitein diminished plasma cholesterol in female golden Syrian hamsters. J Agric Food Chem. 2007;55(26):11063–7. CASPubMed Google Scholar
Setchell KDR, Clerici C. Equol: history, chemistry, and formation. J Nutr. 2010;140(7):1355S–62S. CASPubMed Google Scholar
Kang J, Badger TM, Ronis MJJ, Wu X. Non-isoflavone phytochemicals in soy and their health effects. J Agric Food Chem. 2010;58(14):8119–33. CASPubMed Google Scholar
Beck V, Rohr U, Jungbauer A. Phytoestrogens derived from red clover: an alternative to estrogen replacement therapy? J Steroid Biochem Mol Biol. 2005;94(5):499–518. CASPubMed Google Scholar
Kaufman PB, Duke JA, Brielmann H, Boik J, Hoyt JE. A comparative survey of leguminous plants as sources of the isoflavones, genistein and daidzein: implications for human nutrition and health. J Altern Complement Med. 1997;3(1):7–12. CASPubMed Google Scholar
Chun OK, Chung SJ, Song WO. Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr. 2007;137(5):1244–52. CASPubMed Google Scholar
Xiao CW. Health effects of soy protein and isoflavones in humans. J Nutr. 2008;138(6):1244S–9S. CASPubMed Google Scholar
Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr. 2000;130(9):2243–50. CASPubMed Google Scholar
Allred CD, Ju YH, Allred KF, Chang J, Helferich WG. Dietary genistin stimulates growth of estrogen-dependent breast cancer tumors similar to that observed with genistein. Carcinogenesis. 2001;22(10):1667–73. CASPubMed Google Scholar
Day AJ, Canada FJ, Diaz JC, Kroon PA, McLauchlan R, Faulds CB, Plumb GW, Morgan MR, Williamson G. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 2000;468(2–3):166–70. CASPubMed Google Scholar
Xu X, Harris KS, Wang H-J, Murphy PA, Hendrich S. Bioavailability of soybean isoflavones depends upon gut microflora in women. J Nutr. 1995;125(9):2307–15. CASPubMed Google Scholar
Setchell KD, Brown NM, Desai P, Zimmer-Nechemias L, Wolfe BE, Brashear WT, Kirschner AS, Cassidy A, Heubi JE. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J Nutr. 2001;131(4 Suppl):1362S–75S. CASPubMed Google Scholar
Duncan AM, Merz-Demlow BE, Xu X, Phipps WR, Kurzer MS. Premenopausal equol excretors show plasma hormone profiles associated with lowered risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2000;9(6):581–6. CASPubMed Google Scholar
Setchell KD, Brown NM, Lydeking-Olsen E. The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones. J Nutr. 2002;132(12):3577–84. CASPubMed Google Scholar
Akaza H, Miyanaga N, Takashima N, Naito S, Hirao Y, Tsukamoto T, Fujioka T, Mori M, Kim W-J, Song JM, Pantuck AJ. Comparisons of percent Equol producers between prostate cancer patients and controls: case-controlled studies of isoflavones in Japanese, Korean and American residents. Jpn J Clin Oncol. 2004;34(2):86–9. PubMed Google Scholar
Hodgson JM, Croft KD, Puddey IB, Mori TA, Beilin LJ. Soybean isoflavonoids and their metabolic products inhibit in vitro lipoprotein oxidation in serum. J Nutr Biochem. 1996;7(12):664–9. CAS Google Scholar
Sakai T, Kogiso M. Soy isoflavones and immunity. J Med Invest. 2008;55(3–4):167–73. PubMed Google Scholar
Cooke PS, Selvaraj V, Yellayi S. Genistein, estrogen receptors, and the acquired immune response. J Nutr. 2006;136(3):704–8. CASPubMed Google Scholar
Morton MS, Arisaka O, Miyake N, Morgan LD, Evans BA. Phytoestrogen concentrations in serum from Japanese men and women over forty years of age. J Nutr. 2002;132(10):3168–71. CASPubMed Google Scholar
Setchell KD, Zimmer-Nechemias L, Cai J, Heubi JE. Exposure of infants to phyto-oestrogens from soy-based infant formula. Lancet. 1997;350(9070):23–7. CASPubMed Google Scholar
Setchell KD, Brown NM, Zhao X, Lindley SL, Heubi JE, King EC, Messina MJ. Soy isoflavone phase II metabolism differs between rodents and humans: implications for the effect on breast cancer risk. Am J Clin Nutr. 2011;94(5):1284–94. CASPubMed Google Scholar
Chang HC, Churchwell MI, Delclos KB, Newbold RR, Doerge DR. Mass spectrometric determination of Genistein tissue distribution in diet-exposed Sprague-Dawley rats. J Nutr. 2000;130(8):1963–70. CASPubMed Google Scholar
Rimbach G, De Pascual-Teresa S, Ewins BA, Matsugo S, Uchida Y, Minihane AM, Turner R, VafeiAdou K, Weinberg PD. Antioxidant and free radical scavenging activity of isoflavone metabolites. Xenobiotica. 2003;33(9):913–25. CASPubMed Google Scholar
Rotondo S, Krauze-Brzosko K, Manarini S, Martelli N, Pecce R, Evangelista V, Benedetta Donati M, Cerletti C. Inhibition by soya isoflavones of human polymorphonuclear leukocyte function: possible relevance for the beneficial effects of soya intake. Br J Nutr 2008;99(2):240–7. Google Scholar
Wei H, Bowen R, Cai Q, Barnes S, Wang Y. Antioxidant and antipromotional effects of the soybean isoflavone genistein. Proc Soc Exp Biol Med. 1995;208(1):124–30. CASPubMed Google Scholar
Djuric Z, Chen G, Doerge DR, Heilbrun LK, Kucuk O. Effect of soy isoflavone supplementation on markers of oxidative stress in men and women. Cancer Lett. 2001;172(1):1–6. CASPubMed Google Scholar
Wiseman H, O'Reilly JD, Adlercreutz H, Mallet AI, Bowey EA, Rowland IR, Sanders TA. Isoflavone phytoestrogens consumed in soy decrease F(2)-isoprostane concentrations and increase resistance of low-density lipoprotein to oxidation in humans. Am J Clin Nutr. 2000;72(2):395–400. CASPubMed Google Scholar
Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987;262(12):5592–5. CASPubMed Google Scholar
Akiyama T, Ogawara H, Tony H, Bartholomew MS. Use and specificity of genistein as inhibitor of protein-tyrosine kinases. Methods Enzymol. 1991;201:362–70. CASPubMed Google Scholar
Casagrande F, Darbon J-M. Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK1. Biochem Pharmacol. 2001;61(10):1205–15. CASPubMed Google Scholar
Dijsselbloem N, Vanden Berghe W, De Naeyer A, Haegeman G. Soy isoflavone phyto-pharmaceuticals in interleukin-6 affections: multi-purpose nutraceuticals at the crossroad of hormone replacement, anti-cancer and anti-inflammatory therapy. Biochem Pharmacol 2004;68(6):1171–85. Google Scholar
Gong L, Li Y, Nedeljkovic-Kurepa A, Sarkar FH. Inactivation of NF-[kappa]B by genistein is mediated via Akt signaling pathway in breast cancer cells. Oncogene. 2003;22(30):4702–9. CASPubMed Google Scholar
Salti GI, Grewal S, Mehta RR, Das Gupta TK, Boddie Jr AW, Constantinou AI. Genistein induces apoptosis and topoisomerase II-mediated DNA breakage in colon cancer cells. Eur J Cancer. 2000;36(6):796–802. Google Scholar
Markovits J, Linassier C, Fosse P, Couprie J, Pierre J, Jacquemin-Sablon A, Saucier JM, Le Pecq JB, Larsen AK. Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II. Cancer Res. 1989;49(18):5111–7. CASPubMed Google Scholar
Nichols MR, Morimoto BH. Differential inhibition of multiple cAMP phosphodiesterase isozymes by isoflavones and tyrphostins. Mol Pharm. 2000;57(4):738–45. CAS Google Scholar
Taylor CK, Levy RM, Elliott JC, Burnett BP. The effect of genistein aglycone on cancer and cancer risk: a review of in vitro, preclinical, and clinical studies. Nutr Rev. 2009;67(7):398–415. PubMed Google Scholar
Burke-Gaffney A, Hellewell PG. Tumour necrosis factor-alpha-induced ICAM-1 expression in human vascular endothelial and lung epithelial cells: modulation by tyrosine kinase inhibitors. Br J Pharmacol. 1996;119(6):1149–58. CASPubMed Google Scholar
Nagata M, Sedgwick JB, Busse WW. Synergistic activation of eosinophil superoxide anion generation by VCAM-1 and GM-CSF. Involvement of tyrosine kinase and protein kinase C. Int Arch Allergy Immunol. 1997;114(Suppl 1):78–80. CASPubMed Google Scholar
Weber C. Involvement of tyrosine phosphorylation in endothelial adhesion molecule induction. Immunol Res. 1996;15(1):30–7. CASPubMed Google Scholar
Tanabe J, Watanabe M, Kondoh S, Mue S, Ohuchi K. Possible roles of protein kinases in neutrophil chemotactic factor production by leucocytes in allergic inflammation in rats. Br J Pharmacol. 1994;113(4):1480–6. CASPubMed Google Scholar
Corbett JA, Kwon G, Marino MH, Rodi CP, Sullivan PM, Turk J, McDaniel ML. Tyrosine kinase inhibitors prevent cytokine-induced expression of iNOS and COX-2 by human islets. Am J Physiol. 1996;270(6 Pt 1):C1581–7. CASPubMed Google Scholar
Barry H. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys. 2008;476(2):107–12. Google Scholar
Rickard DJ, Monroe DG, Ruesink TJ, Khosla S, Riggs BL, Spelsberg TC. Phytoestrogen genistein acts as an estrogen agonist on human osteoblastic cells through estrogen receptors alpha and beta. J Cell Biochem. 2003;89(3):633–46. CASPubMed Google Scholar
Gameiro CM, Romao F, Castelo-Branco C. Menopause and aging: changes in the immune system—a review. Maturitas. 2010;67(4):316–20. CASPubMed Google Scholar
Kogiso M, Sakai T, Mitsuya K, Komatsu T, Yamamoto S. Genistein suppresses antigen-specific immune responses through competition with 17[beta]-estradiol for estrogen receptors in ovalbumin-immunized BALB/c mice. Nutrition. 2006;22(7–8):802–9. CASPubMed Google Scholar
Badger TM, Gilchrist JM, Pivik RT, Andres A, Shankar K, Chen J-R, Ronis MJ. The health implications of soy infant formula. Am J Clin Nutr. 2009;89(5):1668S–72S. CASPubMed Google Scholar
Vandenplas Y, De Greef E, Devreker T, Hauser B. Soy infant formula: is it that bad? Acta Paediatr. 2011;100(2):162–6. PubMed Google Scholar
Merritt RJ, Jenks BH. Safety of soy-based infant formulas containing isoflavones: the clinical evidence. J Nutr. 2004;134(5):1220S–4S. PubMed Google Scholar
Strom BL, Schinnar R, Ziegler EE, Barnhart KT, Sammel MD, Macones GA, Stallings VA, Drulis JM, Nelson SE, Hanson SA. Exposure to soy-based formula in infancy and endocrinological and reproductive outcomes in young adulthood. JAMA. 2001;286(7):807–14. CASPubMed Google Scholar
Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9(11):799–809. CASPubMed Google Scholar
Suzuki T, Hara H. Role of flavonoids in intestinal tight junction regulation. J Nutr Biochem. 2011;22(5):401–8. CASPubMed Google Scholar
Rao RK, Basuroy S, Rao VU, Karnaky KJ Jr, Gupta A. Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem J. 2002;368(Pt 2):471–81. CASPubMed Google Scholar
Atkinson KJ, Rao RK. Role of protein tyrosine phosphorylation in acetaldehyde-induced disruption of epithelial tight junctions. Am J Physiol Gastrointest Liver Physiol. 2001;280(6):G1280–8. CASPubMed Google Scholar
Sheth P, Seth A, Atkinson KJ, Gheyi T, Kale G, Giorgianni F, Desiderio DM, Li C, Naren A, Rao R. Acetaldehyde dissociates the PTP1B-E-cadherin-beta-catenin complex in Caco-2 cell monolayers by a phosphorylation-dependent mechanism. Biochem J. 2007;402(2):291–300. CASPubMed Google Scholar
Donovan SM, Andres A, Mathai RA, Kuhlenschmidt TB, Kuhlenschmidt MS. Soy formula and isoflavones and the developing intestine. Nutr Rev. 2009;67(Suppl 2):S192–200. PubMed Google Scholar
Wells CL, Jechorek RP, Kinneberg KM, Debol SM, Erlandsen SL. The isoflavone genistein inhibits internalization of enteric bacteria by cultured Caco-2 and HT-29 enterocytes. J Nutr. 1999;129(3):634–40. CASPubMed Google Scholar
Satsu H, Hyun JS, Shin HS, Shimizu M. Suppressive effect of an isoflavone fraction on tumor necrosis factor-alpha-induced interleukin-8 production in human intestinal epithelial Caco-2 cells. J Nutr Sci Vitaminol (Tokyo). 2009;55(5):442–6. CAS Google Scholar
Rincon M, Anguita J, Nakamura T, Fikrig E, Flavell RA. Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J Exp Med. 1997;185(3):461–9. CASPubMed Google Scholar
Dodge IL, Carr MW, Cernadas M, Brenner MB. IL-6 production by pulmonary dendritic cells impedes Th1 immune responses. J Immunol. 2003;170(9):4457–64. CASPubMed Google Scholar
Baggiolini M, Clark-Lewis I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett. 1992;307(1):97–101. CASPubMed Google Scholar
Kovats S, Carreras E. Regulation of dendritic cell differentiation and function by estrogen receptor ligands. Cell Immunol. 2008;252(1–2):81–90. CASPubMed Google Scholar
Dijsselbloem N, Goriely S, Albarani V, Gerlo S, Francoz S, Marine J-C, Goldman M, Haegeman G, Berghe WV. A critical role for p53 in the control of NF-{kappa}B-dependent gene expression in TLR4-stimulated dendritic cells exposed to genistein. J Immunol. 2007;178(8):5048–57. CASPubMed Google Scholar
Beavers KM, Jonnalagadda SS, Messina MJ. Soy consumption, adhesion molecules, and pro-inflammatory cytokines: a brief review of the literature. Nutr Rev. 2009;67(4):213–21. PubMed Google Scholar
Sato K, Kawasaki H, Nagayama H, Enomoto M, Morimoto C, Tadokoro K, Juji T, Takahashi TA. Signaling events following chemokine receptor ligation in human dendritic cells at different developmental stages. Int Immunol. 2001;13(2):167–79. CASPubMed Google Scholar
Masilamani M, Wei J, Bhatt S, Paul M, Yakir S, Sampson HA. Soybean isoflavones regulate dendritic cell function and suppress allergic sensitization to peanut. J Allergy Clin Immunol 2011;128(6):1242–50. e1241. Google Scholar
Yum MK, Jung MY, Cho D, Kim TS. Suppression of dendritic cells’ maturation and functions by daidzein, a phytoestrogen. Toxicol Appl Pharmacol. 2011;257(2):174–81. CASPubMed Google Scholar
Atluru D, Jackson TM, Atluru S. Genistein, a selective protein tyrosine kinase inhibitor, inhibits interleukin-2 and leukotriene B4 production from human mononuclear cells. Clin Immunol Immunopathol. 1991;59(3):379–87. CASPubMed Google Scholar
Nishio K, Miura K, Ohira T, Heike Y, Saijo N. Genistein, a tyrosine kinase inhibitor, decreased the affinity of p56(lck) to β-chain of interleukin-2 receptor in human natural killer (NK)-rich cells and decreased NK-mediated cytotoxicity. Proc Soc Exp Biol Med. 1994;207(2):227–33. CASPubMed Google Scholar
Gredel S, Grad C, Rechkemmer G, Watzl B. Phytoestrogens and phytoestrogen metabolites differentially modulate immune parameters in human leukocytes. Food Chem Toxicol. 2008;46(12):3691–6. CASPubMed Google Scholar
Zhang Y, Song TT, Cunnick JE, Murphy PA, Hendrich S. Daidzein and genistein glucuronides in vitro are weakly estrogenic and activate human natural killer cells at nutritionally relevant concentrations. J Nutr. 1999;129(2):399–405. CASPubMed Google Scholar
Henderson TA, Saunders PTK, Moffett-King A, Groome NP, Critchley HOD. Steroid receptor expression in uterine natural killer cells. J Clin Endocrinol Metab. 2003;88(1):440–9. CASPubMed Google Scholar
Hohman RJ, Dreskin SC. Measuring degranulation of mast cells. Curr Protoc Immunol 2001;Chapter 7:Unit 7, 26. Google Scholar
Marshall T, Shult P, Busse WW. Release of lysosomal enzyme beta-glucuronidase from isolated human eosinophils. J Allergy Clin Immunol. 1988;82(4):550–5. CASPubMed Google Scholar
de Boer M, Roos D. Metabolic comparison between basophils and other leukocytes from human blood. J Immunol. 1986;136(9):3447–54. PubMed Google Scholar
Schwartz LB, Austen KF. Enzymes of the mast cell granule. J Invest Dermatol. 1980;74(5):349–53. CASPubMed Google Scholar
Tamura S, Yoshihira K, Tokumaru M, Zisheng X, Murakami N. Inhibitors for expression of IgE receptor on human mast cell from Puerariae Flos. Bioorganic Medicinal Chem Lett. 2011;20(13):3872–5. Google Scholar
Tedeschi A, Lorini M, Galbiati S, Gibelli S, Miadonna A. Inhibition of basophil histamine release by tyrosine kinase and phosphatidylinositol 3-kinase inhibitors. Int J Immunopharmacol. 2000;22(10):797–808. CASPubMed Google Scholar
Lavens SE, Peachell PT, Warner JA. Role of tyrosine kinases in IgE-mediated signal transduction in human lung mast cells and basophils. Am J Respir Cell Mol Biol. 1992;7(6):637–44. CASPubMed Google Scholar
Lober K, Alfonso A, Escribano L, Botana LM. Influence of the tyrosine kinase inhibitors STI571 (Glivec), lavendustin A and genistein on human mast cell line (HMC-1(560)) activation. J Cell Biochem. 2008;103(4):1076–88. CASPubMed Google Scholar
Alexandrakis MG, Kyriakou DS, Kempuraj D, Huang M, Boucher W, Seretakis D, Theoharides TC. The isoflavone genistein inhibits proliferation and increases histamine content in human leukemic mast cells. Allergy Asthma Proc. 2003;24(5):373–7. CASPubMed Google Scholar
Bao ZS, Hong L, Guan Y, Dong XW, Zheng HS, Tan GL, Xie QM. Inhibition of airway inflammation, hyperresponsiveness and remodeling by soy isoflavone in a murine model of allergic asthma. Int Immunopharmacol. 2011;11(8):899–906. CASPubMed Google Scholar
Regal JF, Fraser DG, Weeks CE, Greenberg NA. Dietary phytoestrogens have anti-inflammatory activity in a guinea pig model of asthma. Proc Soc Exp Biol Med. 2000;223(4):372–8. CASPubMed Google Scholar
Huntley JF, Gooden C, Newlands GF, Mackellar A, Lammas DA, Wakelin D, Tuohy M, Woodbury RG, Miller HR. Distribution of intestinal mast cell proteinase in blood and tissues of normal and Trichinella-infected mice. Parasite Immunol. 1990;12(1):85–95. CASPubMed Google Scholar
Newlands GF, Gibson S, Knox DP, Grencis R, Wakelin D, Miller HR. Characterization and mast cell origin of a chymotrypsin-like proteinase isolated from intestines of mice infected with Trichinella spiralis. Immunology. 1987;62(4):629–34. CASPubMed Google Scholar
Kalhan R, Smith LJ, Nlend MC, Nair A, Hixon JL, Sporn PHS. A mechanism of benefit of soy genistein in asthma: inhibition of eosinophil p38-dependent leukotriene synthesis. Clin Exp Allergy. 2008;38(1):103–12. CASPubMed Google Scholar
Liang YC, Huang YT, Tsai SH, Lin-Shiau SY, Chen CF, Lin JK. Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis. 1999;20(10):1945–52. CASPubMed Google Scholar
Hooshmand S, Soung do Y, Lucas EA, Madihally SV, Levenson CW, Arjmandi BH. Genistein reduces the production of proinflammatory molecules in human chondrocytes. J Nutr Biochem 2007;18(9):609–14. Google Scholar
Hamalainen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm. 2007;2007:45673. PubMed Google Scholar
Sheu F, Lai H-H, Yen G-C. Suppression effect of soy isoflavones on nitric oxide production in RAW 264.7 macrophages. J Agric Food Chem. 2001;49(4):1767–72. CASPubMed Google Scholar
Kang JS, Yoon YD, Han MH, Han SB, Lee K, Kang MR, Moon EY, Jeon YJ, Park SK, Kim HM. Estrogen receptor-independent inhibition of tumor necrosis factor-Î ± gene expression by phytoestrogen equol is mediated by blocking nuclear factor-κB activation in mouse macrophages. Biochem Pharmacol. 2005;71(1–2):136–43. CASPubMed Google Scholar
Gu L, House SE, Prior RL, Fang N, Ronis MJ, Clarkson TB, Wilson ME, Badger TM. Metabolic phenotype of isoflavones differ among female rats, pigs, monkeys, and women. J Nutr. 2006;136(5):1215–21. CASPubMed Google Scholar
Andres A, Donovan SM, Kuhlenschmidt MS. Soy isoflavones and virus infections. J Nutr Biochem. 2009;20(8):563–9. CASPubMed Google Scholar
Messina M. Insights gained from 20 years of soy research. J Nutr. 2010;140(12):2289S–95S. CASPubMed Google Scholar
Omoni AO, Aluko RE. Soybean foods and their benefits: potential mechanisms of action. Nutr Rev. 2005;63(8):272–83. PubMed Google Scholar
Reiter E, Beck V, Medjakovic S, Jungbauer A. Isoflavones are safe compounds for therapeutical applications—evaluation of in vitro data. Gynecol Endocrinol. 2009;25(9):554–80. CASPubMed Google Scholar
Yan L, Spitznagel EL. Soy consumption and prostate cancer risk in men: a revisit of a meta-analysis. Am J Clin Nutr. 2009;89(4):1155–63. CASPubMed Google Scholar
Wu AH, Yu MC, Tseng CC, Pike MC. Epidemiology of soy exposures and breast cancer risk. Br J Cancer. 2008;98(1):9–14. CASPubMed Google Scholar
Wu AH, Yang D, Pike MC. A meta-analysis of soyfoods and risk of stomach cancer: the problem of potential confounders. Cancer Epidemiol Biomarkers Prev. 2000;9(10):1051–8. CASPubMed Google Scholar
Hooper L, Kroon PA, Rimm EB, Cohn JS, Harvey I, Le Cornu KA, Ryder JJ, Hall WL, Cassidy A. Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2008;88(1):38–50. CASPubMed Google Scholar
Sacks FM, Lichtenstein A, Van Horn L, Harris W, Kris-Etherton P, Winston M. Soy protein, isoflavones, and cardiovascular health: an American heart association science advisory for professionals from the nutrition committee. Circulation. 2006;113(7):1034–44. CASPubMed Google Scholar
Zhan S, Ho SC. Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am J Clin Nutr. 2005;81(2):397–408. CASPubMed Google Scholar
The role of soy isoflavones in menopausal health: report of The North American Menopause Society/Wulf H. Utian Translational Science Symposium in Chicago, IL (October 2010). Menopause 2011;18(7):732–53.
Baeza I, De Castro NM, Gimenez-Llort L, De la Fuente M. Ovariectomy, a model of menopause in rodents, causes a premature aging of the nervous and immune systems. J Neuroimmunol. 2010;219(1–2):90–9. CASPubMed Google Scholar
Vallejo AN, Brandes JC, Weyand CM, Goronzy JJ. Modulation of CD28 expression: distinct regulatory pathways during activation and replicative senescence. J Immunol. 1999;162(11):6572–9. CASPubMed Google Scholar
Vallejo AN, Weyand CM, Goronzy JJ. T-cell senescence: a culprit of immune abnormalities in chronic inflammation and persistent infection. Trends Mol Med. 2004;10(3):119–24. CASPubMed Google Scholar
Tyagi AM, Srivastava K, Sharan K, Yadav D, Maurya R, Singh D. Daidzein Prevents the Increase in CD4 + CD28null T cells and B Lymphopoiesis in ovariectomized mice: a key mechanism for anti-osteoclastogenic effect. PLoS ONE. 2011;6(6):e21216. CASPubMed Google Scholar
Baeza I, De Castro NM, Arranz L, De la Fuente Mn. Soybean and green tea polyphenols improve immune function and redox status in very old ovariectomized mice. Rejuvenation Res 2010;13(6):665–74. Google Scholar
Yellayi S, Naaz A, Szewczykowski MA, Sato T, Woods JA, Chang J, Segre M, Allred CD, Helferich WG, Cooke PS. The phytoestrogen genistein induces thymic and immune changes: a human health concern? Proc Natl Acad Sci USA. 2002;99(11):7616–21. CASPubMed Google Scholar
Yellayi S, Zakroczymski MA, Selvaraj V, Valli VE, Ghanta V, Helferich WG, Cooke PS. The phytoestrogen genistein suppresses cell-mediated immunity in mice. J Endocrinol 2003;176(2):267–74. Google Scholar
Verdrengh M, Jonsson IM, Holmdahl R, Tarkowski A. Genistein as an anti-inflammatory agent. Inflamm Res. 2003;52(8):341–6. CASPubMed Google Scholar
Nalbandian G, Kovats S. Understanding sex biases in immunity: effects of estrogen on the differentiation and function of antigen-presenting cells. Immunol Res. 2005;31(2):91–106. CASPubMed Google Scholar
Suenaga R, Evans MJ, Mitamura K, Rider V, Abdou NI. Peripheral blood T cells and monocytes and B cell lines derived from patients with lupus express estrogen receptor transcripts similar to those of normal cells. J Rheumatol. 1998;25(7):1305–12. CASPubMed Google Scholar
Gulshan S, McCruden AB, Stimson WH. Oestrogen receptors in macrophages. Scand J Immunol. 1990;31(6):691–7. CASPubMed Google Scholar
Zhang R, Li Y, Wang W. Enhancement of immune function in mice fed high doses of soy daidzein. Nutr Cancer. 1997;29(1):24–8. CASPubMed Google Scholar
Guo TL, McCay JA, Zhang LX, Brown RD, You L, Karrow NA, Germolec DR, White KL Jr. Genistein modulates immune responses and increases host resistance to B16F10 tumor in adult female B6C3F1 mice. J Nutr. 2001;131(12):3251–8. CASPubMed Google Scholar
Sakai T, Kogiso M, Mitsuya K, Komatsu T, Yamamoto S. Genistein enhances antigen-specific cytokine production in female DO11.10 transgenic mice. J Nutr Sci Vitaminol (Tokyo). 2006;52(5):327–32. CAS Google Scholar
Sakai T, Furoku S, Nakamoto M, Shuto E, Hosaka T, Nishioka Y, Sone S. The soy isoflavone equol enhances antigen-specific IgE production in ovalbumin-immunized BALB/c mice. J Nutr Sci Vitaminol (Tokyo). 2010;56(1):72–6. CAS Google Scholar
Miyake Y, Sasaki S, Ohya Y, Miyamoto S, Matsunaga I, Yoshida T, Hirota Y, Oda H, the Osaka M, Child Health Study G. Soy, isoflavones, and prevalence of allergic rhinitis in Japanese women: the Osaka maternal and child health study. J Allergy Clin Immunol 2005;115(6):1176–83. Google Scholar
Hirayama F, Lee AH, Binns CW, Hiramatsu N, Mori M, Nishimura K. Dietary intake of isoflavones and polyunsaturated fatty acids associated with lung function, breathlessness and the prevalence of chronic obstructive pulmonary disease: possible protective effect of traditional Japanese diet. Mol Nutr Food Res. 2010;54(7):909–17. CASPubMed Google Scholar
Smith LJ, Holbrook JT, Wise R, Blumenthal M, Dozor AJ, Mastronarde J, Williams L. Dietary intake of soy genistein is associated with lung function in patients with asthma. J Asthma. 2004;41(8):833–43. CASPubMed Google Scholar
Duan W, Kuo IC, Selvarajan S, Chua KY, Bay BH, Wong WSF. Antiinflammatory effects of genistein, a tyrosine kinase inhibitor, on a guinea pig model of asthma. Am J Respir Crit Care Med. 2003;167(2):185–92. PubMed Google Scholar
Zhang T, Pan W, Takebe M, Schofield B, Sampson H, Li X-M. Therapeutic effects of a fermented soy product on peanut hypersensitivity is associated with modulation of T-helper type 1 and T-helper type 2 responses. Clin Exp Allergy. 2008;38(11):1808–18. CASPubMed Google Scholar
Morimoto M, Watanabe T, Yamori M, Takebe M, Wakatsuki Y. Isoflavones regulate innate immunity and inhibit experimental colitis. J Gastroenterol Hepatol. 2009;24(6):1123–9. CASPubMed Google Scholar
Seibel J, Molzberger A, Hertrampf T, Laudenbach-Leschowski U, Diel P. Oral treatment with genistein reduces the expression of molecular and biochemical markers of inflammation in a rat model of chronic TNBS-induced colitis. Eur J Nutr. 2009;48(4):213–20. CASPubMed Google Scholar
Seibel J, Molzberger A, Hertrampf T, Laudenbach-Leschowski U, Degen G, Diel P. In utero and postnatal exposure to a phytoestrogen-enriched diet increases parameters of acute inflammation in a rat model of TNBS-induced colitis. Arch Toxicol. 2008;82(12):941–50. CASPubMed Google Scholar
Sakai T, Furoku S, Nakamoto M, Shuto E, Hosaka T, Nishioka Y, Sone S. Soy isoflavone equol perpetuates dextran sulfate sodium-induced acute colitis in mice. Biosci Biotechnol Biochem. 2011;75(3):593–5. CASPubMed Google Scholar
Wang J, Zhang Q, Jin S, He D, Zhao S, Liu S. Genistein modulate immune responses in collagen-induced rheumatoid arthritis model. Maturitas. 2008;59(4):405–12. CASPubMed Google Scholar
Hong YH, Wang TC, Huang CJ, Cheng WY, Lin BF. Soy isoflavones supplementation alleviates disease severity in autoimmune-prone MRL-lpr/lpr mice. Lupus. 2008;17(9):814–21. CASPubMed Google Scholar
Choi MS, Jung UJ, Yeo J, Kim MJ, Lee MK. Genistein and daidzein prevent diabetes onset by elevating insulin level and altering hepatic gluconeogenic and lipogenic enzyme activities in non-obese diabetic (NOD) mice. Diabetes Metab Res Rev. 2008;24(1):74–81. CASPubMed Google Scholar
De Paula ML, Rodrigues DH, Teixeira HC, Barsante MM, Souza MA, Ferreira AP. Genistein down-modulates pro-inflammatory cytokines and reverses clinical signs of experimental autoimmune encephalomyelitis. Int Immunopharmacol. 2008;8(9):1291–7. PubMed Google Scholar
O'Connor TP, Liesen DA, Mann PC, Rolando L, Banz WJ. A high isoflavone soy protein diet and intravenous genistein delay rejection of rat cardiac allografts. J Nutr. 2002;132(8):2283–7. PubMed Google Scholar
Zhu GC, Ding Z, Chen ZS, Dong C, Guo H, Chen BC. Experimental study on genistein prevention and treatment of transplant arteriosclerosis in aortic transplants of rat. Transplant Proc. 2006;38(10):3307–8. CASPubMed Google Scholar
Cupisti A, Ghiadoni L, D'Alessandro C, Kardasz I, Morelli E, Panichi V, Locati D, Morandi S, Saba A, Barsotti G, Taddei S, Arnoldi A, Salvetti A. Soy protein diet improves endothelial dysfunction in renal transplant patients. Nephrol Dial Transplant. 2007;22(1):229–34. CASPubMed Google Scholar
Paradkar PN, Blum PS, Berhow MA, Baumann H, Kuo S-M. Dietary isoflavones suppress endotoxin-induced inflammatory reaction in liver and intestine. Cancer Lett. 2004;215(1):21–8. CASPubMed Google Scholar
Hwang J, Wang J, Morazzoni P, Hodis HN, Sevanian A. The phytoestrogen equol increases nitric oxide availability by inhibiting superoxide production: an antioxidant mechanism for cell-mediated LDL modification. Free Radic Biol Med. 2003;34(10):1271–82. CASPubMed Google Scholar
Choi C, Cho H, Park J, Cho C, Song Y. Suppressive effects of genistein on oxidative stress and NFkappaB activation in RAW 264.7 macrophages. Biosci Biotechnol Biochem. 2003;67(9):1916–22. CASPubMed Google Scholar
Blay M, Espinel AE, Delgado MA, Baiges I, Blade C, Arola L, Salvado J. Isoflavone effect on gene expression profile and biomarkers of inflammation. J Pharm Biomed Anal. 2010;51(2):382–90. CASPubMed Google Scholar
Kang JS, Yoon YD, Han MH, Han SB, Lee K, Park SK, Kim HM. Equol inhibits nitric oxide production and inducible nitric oxide synthase gene expression through down-regulating the activation of Akt. Int Immunopharmacol. 2007;7(4):491–9. CASPubMed Google Scholar
Davis JN, Kucuk O, Djuric Z, Sarkar FH. Soy isoflavone supplementation in healthy men prevents NF-kappa B activation by TNF-alpha in blood lymphocytes. Free Radic Biol Med. 2001;30(11):1293–302. CASPubMed Google Scholar
Wang W, Higuchi CM, Zhang R. Individual and combinatory effects of soy isoflavones on the in vitro potentiation of lymphocyte activation. Nutr Cancer. 1997;29(1):29–34. CASPubMed Google Scholar
Baeza I, de Castro NM, Alvarado C, Alvarez P, Arranz L, Bayon J, de la Fuente M. Improvement of immune cell functions in aged mice treated for five weeks with soybean isoflavones. Ann N Y Acad Sci. 2007;1100:497–504. CASPubMed Google Scholar
Schleipen B, Hertrampf T, Fritzemeier KH, Kluxen FM, Lorenz A, Molzberger A, Velders M, Diel P. ERbeta-specific agonists and genistein inhibit proliferation and induce apoptosis in the large and small intestine. Carcinogenesis. 2011;32(11):1675–83. CASPubMed Google Scholar
Calemine J, Zalenka J, Karpuzoglu-Sahin E, Ward DL, Lengi A, Ahmed SA. The immune system of geriatric mice is modulated by estrogenic endocrine disruptors (diethylstilbestrol, alpha-zearalanol, and genistein): effects on interferon-gamma. Toxicology. 2003;194(1–2):115–28. CASPubMed Google Scholar
Sakai T, Kogiso M, Mitsuya K, Komatsu T, Yamamoto S. Genistein suppresses development of spontaneous atopic-like dermatitis in NC/Nga mice. J Nutr Sci Vitaminol (Tokyo). 2006;52(4):293–6. CAS Google Scholar
Klein SL, Wisniewski AB, Marson AL, Glass GE, Gearhart JP. Early exposure to genistein exerts long-lasting effects on the endocrine and immune systems in rats. Mol Med. 2002;8(11):742–9. CASPubMed Google Scholar
Guo TL, Zhang XL, Bartolucci E, McCay JA, White KL Jr, You L. Genistein and methoxychlor modulate the activity of natural killer cells and the expression of phenotypic markers by thymocytes and splenocytes in F0 and F1 generations of Sprague-Dawley rats. Toxicology. 2002;172(3):205–15. CASPubMed Google Scholar
Guo TL, White KL Jr, Brown RD, Delclos KB, Newbold RR, Weis C, Germolec DR, McCay JA. Genistein modulates splenic natural killer cell activity, antibody-forming cell response, and phenotypic marker expression in F(0) and F(1) generations of Sprague-Dawley rats. Toxicol Appl Pharmacol. 2002;181(3):219–27. CASPubMed Google Scholar
Curran EM, Judy BM, Newton LG, Lubahn DB, Rottinghaus GE, Macdonald RS, Franklin C, Estes DM. Dietary soy phytoestrogens and ERalpha signalling modulate interferon gamma production in response to bacterial infection. Clin Exp Immunol. 2004;135(2):219–25. CASPubMed Google Scholar
Guo TL, Chi RP, Germolec DR, White KL. Stimulation of the immune response in B6C3F1 mice by genistein is affected by exposure duration, gender, and litter order. J Nutr. 2005;135(10):2449–56. CASPubMed Google Scholar
Guo TL, Chi RP, Zhang XL, Musgrove DL, Weis C, Germolec DR, White KL Jr. Modulation of immune response following dietary genistein exposure in F0 and F1 generations of C57BL/6 mice: Evidence of thymic regulation. Food Chem Toxicol. 2006;44(3):316–25. CASPubMed Google Scholar
Huang Y, Cao S, Nagamani M, Anderson KE, Grady JJ, Lu L-JW. Decreased circulating levels of tumor necrosis factor-{alpha} in postmenopausal women during consumption of soy-containing isoflavones. J Clin Endocrinol Metab. 2005;90(7):3956–62. CASPubMed Google Scholar
Ryan-Borchers TA, Park JS, Chew BP, McGuire MK, Fournier LR, Beerman KA. Soy isoflavones modulate immune function in healthy postmenopausal women. Am J Clin Nutr. 2006;83(5):1118–25. CASPubMed Google Scholar
Jenkins DJA, Kendall CWC, Connelly PW, Jackson CJC, Parker T, Faulkner D, Vidgen E. Effects of high- and low-isoflavone (phytoestrogen) soy foods on inflammatory biomarkers and proinflammatory cytokines in middle-aged men and women. Metabolism. 2002;51(7):919–24. CASPubMed Google Scholar