Nur(R1)turing a Notion on the Etiopathogenesis of Parkinson’s Disease (original) (raw)
Alam M, Schmidt WJ (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 136:317–324 ArticlePubMedCAS Google Scholar
Bäckman C, Perlmann T, Wallén A, Hoffer B, Morales M (1999) A selective group of dopaminergic neurons express NURR1 in the adult mouse brain. Brain Res 851:125–132 ArticlePubMed Google Scholar
Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306 ArticlePubMedCAS Google Scholar
Blondel O, Collin C, McCarran WJ, Zhu S, Zamostiano R, Gozes I, Brenneman DE, McKay RD (2000) A glia-derived signal regulating neuronal differentiation. J Neurosci 20:8012–8020 PubMedCAS Google Scholar
Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ (1999) Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res 823:1–10 ArticlePubMedCAS Google Scholar
Carmine A, Buervenich S, Galter D, Jonsson EG, Sedvall GC, Farde L, Gustavsson JP, Bergman H, Chowdari KV, Nimgaonkar VL, Anvret M, Sydow O, Olson L (2003) NURR1 promoter polymorphisms: Parkinson’s disease, schizophrenia, and personality traits. Am J Med Genet B Neuropsychiatr Genet 120:51–57 Article Google Scholar
Cicchetti F, Brownell AL, Williams K, Chen YI, Livni E, Isacson O (2002) Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci 15:991–998 ArticlePubMedCAS Google Scholar
Czlonkowska A, Kurkowska-Jastrzebska I, Czlonkowski A (2000) Inflammatory changes in the substantia nigra and striatum following MPTP intoxication. Ann Neurol 48:127 ArticlePubMedCAS Google Scholar
Czlonkowska A, Kurkowska-Jastrzebska I, Czlonkowski A, Peter D, Stefano GB (2002) Immune processes in the pathogenesis of Parkinson’s disease—a potential role for microglia and nitric oxide. Med Sci Monit 8:RA165–RA177 PubMedCAS Google Scholar
Delgado M, Ganea D (2003a) Vasoactive intestinal peptide prevents activated microglia-induced neurodegeneration under inflammatory conditions: potential therapeutic role in brain trauma. Faseb J 17:1922–1924 PubMedCAS Google Scholar
Delgado M, Ganea D (2003b) Neuroprotective effect of vasoactive intestinal peptide (VIP) in a mouse model of Parkinson’s disease by blocking microglial activation. Faseb J 17:944–946 PubMedCAS Google Scholar
Delgado M, Jonakait GM, Ganea D (2002) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit chemokine production in activated microglia. Glia 39:148–161 ArticlePubMed Google Scholar
Delgado M, Pozo D, Ganea D (2004) The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol Rev 56:249–290 ArticlePubMedCAS Google Scholar
Delgado M, Varela N, Gonzalez-Rey E (2008) Vasoactive intestinal peptide protects against beta-amyloid-induced neurodegeneration by inhibiting microglia activation at multiple levels. Glia 56:1091–1103 ArticlePubMed Google Scholar
Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81:1285–1297 ArticlePubMedCAS Google Scholar
Gao HM, Liu B, Zhang W, Hong JS (2003) Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol Sci 24:395–401 ArticlePubMedCAS Google Scholar
Gozes I, Brenneman DE (1996) Activity-dependent neurotrophic factor (ADNF). An extracellular neuroprotective chaperonin? J Mol Neurosci 7:235–244 ArticlePubMedCAS Google Scholar
Gressens P (1999) VIP neuroprotection against excitotoxic lesions of the developing mouse brain. Ann N Y Acad Sci 897:109–124 ArticlePubMedCAS Google Scholar
Gressens P, Marret S, Hill JM, Brenneman DE, Gozes I, Fridkin M, Evrard P (1997) Vasoactive intestinal peptide prevents excitotoxic cell death in the murine developing brain. J Clin Investig 100:390–397 ArticlePubMedCAS Google Scholar
Hartmann A, Hunot S, Hirsch EC (2003) Inflammation and dopaminergic neuronal loss in Parkinson’s disease: a complex matter. Exp Neurol 184:561–564 ArticlePubMedCAS Google Scholar
Heikkila RE, Sonsalla PK (1992) The MPTP-treated mouse as a model of parkinsonism: how good is it? Neurochem Int 20(Suppl):299S–303S ArticlePubMedCAS Google Scholar
Hering R, Petrovic S, Mietz EM, Holzmann C, Berg D, Bauer P, Woitalla D, Muller T, Berger K, Kruger R, Riess O (2004) Extended mutation analysis and association studies of Nurr1 (NR4A2) in Parkinson disease. Neurology 62:1231–1232 PubMedCAS Google Scholar
Hermanson E, Joseph B, Castro D, Lindqvist E, Aarnisalo P, Wallen A, Benoit G, Hengerer B, Olson L, Perlmann T (2003) Nurr1 regulates dopamine synthesis and storage in MN9D dopamine cells. Exp Cell Res 288:324–334 ArticlePubMedCAS Google Scholar
Hirsch EC, Hunot S, Damier P, Faucheux B (1998) Glial cells and inflammation in Parkinson’s disease: a role in neurodegeneration? Ann Neurol 44:S115–S120 PubMedCAS Google Scholar
Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP (2003) The role of glial reaction and inflammation in Parkinson’s disease. Ann N Y Acad Sci 991:214–228 PubMedCAS Google Scholar
Iversen L, Foster AC, Hill RG, Iversen SD, Kemp JA, Leeson PD, Rupniak NM, Saywell K, Tricklebank MD, Williams BJ (1992) Neurotoxin-related research: from the laboratory to the clinic. Ann N Y Acad Sci 648:207–218 ArticlePubMedCAS Google Scholar
Iwayama-Shigeno Y, Yamada K, Toyota T, Shimizu H, Hattori E, Yoshitsugu K, Fujisawa T, Yoshida Y, Kobayashi T, Toru M, Kurumaji A, Detera-Wadleigh S, Yoshikawa T (2003) Distribution of haplotypes derived from three common variants of the NR4A2 gene in Japanese patients with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 118:20–24 Article Google Scholar
Jakowec MW, Petzinger GM (2004) 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-lesioned model of Parkinson’s disease, with emphasis on mice and nonhuman primates. Comp Med 54:497–513 PubMedCAS Google Scholar
Joo KM, Chung YH, Kim MK, Nam RH, Lee BL, Lee KH, Cha CI (2004) Distribution of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide receptors (VPAC1, VPAC2, and PAC1 receptor) in the rat brain. J Comp Neurol 476:388–413 ArticlePubMedCAS Google Scholar
Kim K-S, Kim C-H, Hwang D-Y, Seo H, Chung S, Hong SJ, Lim J-K, Anderson T, Isacson O (2003) Orphan nuclear receptor Nurr1 directly transactivates the promoter activity of the tyrosine hydroxylase gene in a cell-specific manner. J Neurochem 85:622–634 ArticlePubMedCAS Google Scholar
Langston JW, Ballard PA Jr (1983) Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1, 2, 5, 6-tetrahydropyridine. N Engl J Med 309:310 PubMedCAS Google Scholar
Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980 ArticlePubMedCAS Google Scholar
Law SW, Conneely OM, DeMayo FJ, O’Malley BW (1992) Identification of a new brain-specific transcription factor, Nurr1. Mol Endocrinol 6:2129–2135 ArticlePubMedCAS Google Scholar
W-d Le, Conneely OM, He Y, Jankovic J, Appel SH (1999a) Reduced nurr1 expression increases the vulnerability of mesencephalic dopamine neurons to MPTP-induced injury. J Neurochem 73:2218–2221 Google Scholar
W-d Le, Conneely OM, Zou L, He Y, Saucedo-Cardenas O, Jankovic J, Mosier DR, Appel SH (1999b) Selective agenesis of mesencephalic dopaminergic neurons in _Nurr1_-deficient mice. Exp Neurol 159:451–458 Article Google Scholar
Le W, Chen S, Jankovic J (2009) Etiopathogenesis of Parkinson disease: a new beginning? Neuroscientist 15:28–35 Google Scholar
Levecque C, Destee A, Mouroux V, Amouyel P, Chartier-Harlin MC (2004) Assessment of Nurr1 nucleotide variations in familial Parkinson’s disease. Neurosci Lett 366:135–138 ArticlePubMedCAS Google Scholar
Luo Y, Henricksen LA, Giuliano RE, Prifti L, Callahan LM, Federoff HJ (2007) VIP is a transcriptional target of Nurr1 in dopaminergic cells. Exp Neurol 203:221–232 ArticlePubMedCAS Google Scholar
Luo Y, Xing F, Guiliano R, Federoff HJ (2008) Identification of a novel nurr1-interacting protein. J Neurosci 28:9277–9286 ArticlePubMedCAS Google Scholar
Maguire-Zeiss KA, Federoff HJ (2003) Convergent pathobiologic model of Parkinson’s disease. Ann N Y Acad Sci 991:152–166 PubMedCAS Google Scholar
McCormack AL, Di Monte DA (2003) Effects of l-dopa and other amino acids against paraquat-induced nigrostriatal degeneration. J Neurochem 85:82–86 PubMedCAS Google Scholar
McGeer PL, McGeer EG (1998) Glial cell reactions in neurodegenerative diseases: pathophysiology and therapeutic interventions. Alzheimer Dis Assoc Disord 12(Suppl 2):S1–S6 PubMedCAS Google Scholar
McGeer PL, Yasojima K, McGeer EG (2001) Inflammation in Parkinson’s disease. Adv Neurol 86:83–89 PubMedCAS Google Scholar
Nichols WC, Uniacke SK, Pankratz N, Reed T, Simon DK, Halter C, Rudolph A, Shults CW, Conneally PM, Foroud T (2004) Evaluation of the role of Nurr1 in a large sample of familial Parkinson’s disease. Mov Disord 19:649–655 ArticlePubMed Google Scholar
Perier C, Bove J, Vila M, Przedborski S (2003) The rotenone model of Parkinson’s disease. Trends Neurosci 26:345–346 ArticlePubMedCAS Google Scholar
Przedborski S, Vila M (2003) The 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci 991:189–198 ArticlePubMedCAS Google Scholar
Rosenkranz D, Weyer S, Tolosa E, Gaenslen A, Berg D, Leyhe T, Gasser T, Stoltze L (2007) Higher frequency of regulatory T cells in the elderly and increased suppressive activity in neurodegeneration. J Neuroimmunol 188:117–127 ArticlePubMedCAS Google Scholar
Sacchetti P, Mitchell TR, Grannerman JG, Bannon MJ (2001) Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism. J Neurochem 76:1565–1572 ArticlePubMedCAS Google Scholar
Sakurada K, Ohshma-Sakurada M, Palmer T, Gage F (1999) NURR1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development 126:4017–4026 PubMedCAS Google Scholar
Saucedo-Cardenas O, Kardon R, Ediger TR, Lydon JP, Conneely OM (1997) Cloning and structural organization of the gene encoding the murine nuclear receptor transcription factor, NURR1. Gene 187:135–139 ArticlePubMedCAS Google Scholar
Saucedo-Cardenas O, Quintana-Hau JD, Le WD, Smidt MP, Cox JJ, De Mayo F, Burbach JP, Conneely OM (1998) Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci USA 95:4013–4018 ArticlePubMedCAS Google Scholar
Smits SM, Ponnio T, Conneely OM, Burbach JPH, Smidt MP (2003) Involvement of Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic neurons. Eur J NeuroSci 18:1731–1738 ArticlePubMed Google Scholar
Steingart RA, Solomon B, Brenneman DE, Fridkin M, Gozes I (2000) VIP and peptides related to activity-dependent neurotrophic factor protect PC12 cells against oxidative stress. J Mol Neurosci 15:137–145 ArticlePubMedCAS Google Scholar
Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ (2007) Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging 29(11):1690–1701 ArticlePubMedCAS Google Scholar
Tan EK, Chung H, Zhao Y, Shen H, Chandran VR, Tan C, Teoh ML, Yih Y, Pavanni R, Wong MC (2003) Genetic analysis of Nurr1 haplotypes in Parkinson’s disease. Neurosci Lett 347:139–142 ArticlePubMedCAS Google Scholar
Tanner CM, Ottman R, Goldman SM, Ellenberg J, Chan P, Mayeux R, Langston JW (1999) Parkinson disease in twins: an etiologic study. JAMA 281:341–346 ArticlePubMedCAS Google Scholar
Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA (2000) The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson’s disease. J Neurosci 20:9207–9214 PubMedCAS Google Scholar
Trojanowski JQ (2003) Rotenone neurotoxicity: a new window on environmental causes of Parkinson’s disease and related brain amyloidoses. Exp Neurol 179:6–8 ArticlePubMed Google Scholar
Wang Z, Benoit G, Liu J, Prasad S, Aarnisalo P, Liu X, Xu H, Walker NP, Perlmann T (2003) Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423:555–560 ArticlePubMedCAS Google Scholar
Wersinger C, Sidhu A (2002) Inflammation and Parkinson’s disease. Curr Drug Targets Inflamm Allergy 1:221–242 ArticlePubMedCAS Google Scholar
Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L, Lucius R (2003) Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. Faseb J 17:500–502 PubMedCAS Google Scholar
Wullner U, Klockgether T (2003) Inflammation in Parkinson’s disease. J Neurol 250(Suppl 1):I35–I38 PubMed Google Scholar
Xu PY, Liang R, Jankovic J, Hunter C, Zeng YX, Ashizawa T, Lai D, Le WD (2002) Association of homozygous 7048G7049 variant in the intron six of Nurr1 gene with Parkinson’s disease. Neurology 58:881–884 PubMedCAS Google Scholar
Zetterström R, Solomin L, Jansson L, Hoffer B, Olson L, Perlmann T (1997) Dopamine neuron angenesis in NURR1-deficient mice. Science 276:248–249 ArticlePubMed Google Scholar
Zhou CJ, Shioda S, Yada T, Inagaki N, Pleasure SJ, Kikuyama S (2002) PACAP and its receptors exert pleiotropic effects in the nervous system by activating multiple signaling pathways. Curr Protein Pept Sci 3:423–439 ArticlePubMedCAS Google Scholar