Pharmacokinetics, Pharmacodynamics and Clinical Use of SGLT2 Inhibitors in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease (original) (raw)
Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38(1):140–9. ArticlePubMed Google Scholar
Tahrani AA, Bailey CJ, Del Prato S, et al. Management of type 2 diabetes: new and future developments in treatment. Lancet. 2011;378(9786):182–97. ArticleCASPubMed Google Scholar
Bonnet F, Scheen AJ. SGLT-2 inhibitors: an opportunity to renew our therapeutic strategy for type 2 diabetes ? Diabetes Metab. 2014;40(Suppl):S1–3. ArticlePubMed Google Scholar
Neumiller JJ, White JR Jr, Campbell RK. Sodium-glucose co-transport inhibitors: progress and therapeutic potential in type 2 diabetes mellitus. Drugs. 2010;70(4):377–85. ArticleCASPubMed Google Scholar
Tahrani AA, Barnett AH, Bailey CJ. SGLT inhibitors in management of diabetes. Lancet Diabetes Endocrinol. 2013;1(2):140–51. ArticleCASPubMed Google Scholar
Hasan FM, Alsahli M, Gerich JE. SGLT2 inhibitors in the treatment of type 2 diabetes. Diabetes Res Clin Pract. 2014;104(3):297–322. ArticleCASPubMed Google Scholar
Bailey CJ. Renal glucose reabsorption inhibitors to treat diabetes. Trends Pharmacol Sci. 2011;32(2):63–71. ArticleCASPubMed Google Scholar
Abdul-Ghani MA, Norton L, Defronzo RA. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev. 2011;32(4):515–31. ArticleCASPubMed Google Scholar
Scheen AJ, Paquot N. Metabolic effects SGLT2 inhibitors beyond increased glucosuria: a review of clinical evidence. Diabetes Metab. 2014;40(Suppl):S4–11. ArticleCASPubMed Google Scholar
Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262–74. ArticlePubMed Google Scholar
Berhan A, Barker A. Sodium glucose co-transport 2 inhibitors in the treatment of type 2 diabetes mellitus: a meta-analysis of randomized double-blind controlled trials. BMC Endocr Disord. 2013;13(1):58. ArticlePubMed CentralPubMed Google Scholar
Scheen AJ. Pharmacodynamics, efficacy and safety of SGLT2 inhibitors for the treatment of type 2 diabetes. Drugs. 2015;75(1):33–59. ArticlePubMed Google Scholar
Scheen AJ. Evaluating SGLT2 inhibitors for type 2 diabetes: pharmacokinetic and toxicological considerations. Expert Opin Drug Metab Toxicol. 2014;10(5):647–63. ArticleCASPubMed Google Scholar
Scheen AJ. Drug-drug interactions with SGLT-2 inhibitors, new oral glucose-lowering agents for the management of type 2 diabetes. Clin Pharmacokinet. 2014;53(4):295–304. ArticleCASPubMed Google Scholar
Plosker GL. Dapagliflozin: a review of its use in type 2 diabetes mellitus. Drugs. 2012;72(17):2289–312. ArticleCASPubMed Google Scholar
Kasichayanula S, Liu X, Lacreta F, et al. Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet. 2014;53(1):17–27. ArticleCASPubMed Google Scholar
Plosker GL. Dapagliflozin: a review of its use in patients with type 2 diabetes. Drugs. 2014;74(18):2191–209. ArticleCASPubMed Google Scholar
Lamos EM, Younk LM, Davis SN. Canagliflozin, an inhibitor of sodium-glucose cotransporter 2, for the treatment of type 2 diabetes mellitus. Expert Opin Drug Metab Toxicol. 2013;9(6):763–75. ArticleCASPubMed Google Scholar
Plosker GL. Canagliflozin: a review of its use in patients with type 2 diabetes mellitus. Drugs. 2014;74(7):807–24. ArticleCASPubMed Google Scholar
Scheen AJ. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet. 2014;53(3):213–25. ArticleCASPubMed CentralPubMed Google Scholar
Seman L, Macha S, Nehmiz G, et al. Empagliflozin (BI 10773), a potent and selective SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin Pharmacol Drug Devel. 2013;2(2):152–61. ArticleCAS Google Scholar
Scott LJ. Empagliflozin: a review of its use in patients with type 2 diabetes mellitus. Drugs 2014 (Epub 2014/10/03).
Scheen AJ. Pharmacokinetic considerations for the treatment of diabetes in patients with chronic kidney disease. Expert Opin Drug Metab Toxicol. 2013;9(5):529–50. ArticleCASPubMed Google Scholar
Kohan DE, Fioretto P, Tang W, et al. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014;85(4):962–71. ArticleCASPubMed CentralPubMed Google Scholar
Maliha G, Townsend RR. SGLT2 inhibitors: their potential reduction in blood pressure. J Am Soc Hypertens. 2015;9(1):48–53. ArticleCASPubMed Google Scholar
Vallon V, Thomson SC. Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu Rev Physiol. 2012;74:351–75. ArticleCASPubMed Google Scholar
De Nicola L, Gabbai FB, Liberti ME, et al. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes. Am J Kidney Dis. 2014;64(1):16–24. ArticlePubMed Google Scholar
Stanton RC. Sodium glucose transport 2 (SGLT2) inhibition decreases glomerular hyperfiltration: is there a role for SGLT2 inhibitors in diabetic kidney disease? Circulation. 2014;129(5):542–4. ArticlePubMed Google Scholar
Kasichayanula S, Liu X, Pe Benito M, et al. The influence of kidney function on dapagliflozin exposure, metabolism and pharmacodynamics in healthy subjects and in patients with type 2 diabetes mellitus. Br J Clin Pharmacol. 2013;76(3):432–44. ArticleCASPubMed CentralPubMed Google Scholar
Ptaszynska A, Mansfield T, Apanovitch AM, et al. Dapagliflozin, selective SGLT2 inhibitor, does not increase risk of fractures. Diabetes. 2014;63(Suppl 1):A282 (abstract 1085-P).
Ptaszynska A, Johnsson KM, Parikh SJ, et al. Safety profile of dapagliflozin for type 2 diabetes: pooled analysis of clinical studies for overall safety and rare events. Drug Saf. 2014;37(10):815–29. ArticleCASPubMed Google Scholar
Ptaszynska A, Mansfield T, Johnsson E, et al. Long-term renal safety with dapagliflozin treatment. Diabetologia. 2014;57(Suppl 1):S22 (abstract 798).
Johnsson E, Johnsson KM, Mansfield TA, et al. Diuresis-related safety and tolerability of dapagliflozin in type 2 diabetes mellitus over 24 weeks. Diabetologia. 2014;57(Suppl 1):S323 (abstract 800).
Yavin Y, Mansfield TA, Ptaszynska A, et al. Hyperkalemia incidence with the SGLT2 inhibitor dapagliflozin. Diabetes. 2014;63(Suppl 1):A282 (abstract 1086-P).
Lambers Heerspink HJ, de Zeeuw D, Wie L, et al. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15(9):853–62.
Oliva RV, Bakris GL. Blood pressure effects of sodium-glucose co-transport 2 (SGLT2) inhibitors. J Am Soc Hypertens. 2014;8(5):330–9. ArticleCASPubMed Google Scholar
Devineni D, Curtin CR, Marbury TC, et al. Effect of hepatic or renal impairment on the pharmacokinetics of canagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Ther. 2015. doi:10.1016/j.clinthera.2014.12.013 (Epub ahead of print).
Inagaki N, Kondo K, Yoshinari T, et al. Pharmacokinetic and pharmacodynamic profiles of canagliflozin in Japanese patients with type 2 diabetes mellitus and moderate renal impairment. Clin Drug Investig. 2014;34(10):731–42. ArticleCASPubMed CentralPubMed Google Scholar
Devineni D, Vaccaro N, Polidori D, et al. Effects of hydrochlorothiazide on the pharmacokinetics, pharmacodynamics, and tolerability of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in healthy participants. Clin Ther. 2014;36(5):698–710. ArticleCASPubMed Google Scholar
Roussel R, de Zeeuw D, Law G, et al. Efficacy and safety of canagliflozin (CANA) in patients with type 2 diabetes mellitus (T2DM) who progressed to stage 3A chronic kidney disease during treatment (abstract). Diabetologia. 2014;57(Suppl 1):S322–3 (abstract 799).
Yale JF, Bakris G, Cariou B, et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab. 2013;15(5):463–73.
Yale JF, Bakris G, Cariou B, et al. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes mellitus and chronic kidney disease. Diabetes Obes Metab. 2014;16(10):1016–27. ArticleCASPubMed Google Scholar
Yamout H, Perkovic V, Davies M, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes and stage 3 nephropathy. Am J Nephrol. 2014;40(1):64–74. ArticleCASPubMed Google Scholar
Khurana M, Vaidyanathan J, Marathe A, et al. Canagliflozin use in patients with renal impairment: utility of quantitative clinical pharmacology analyses in dose optimization. J Clin Pharmacol. 2015. doi:10.1002/jcph.466. (Epub ahead of print).
Macha S, Mattheus M, Halabi A, et al. Pharmacokinetics, pharmacodynamics and safety of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in subjects with renal impairment. Diabetes Obes Metab. 2014;16(3):215–22. ArticleCASPubMed Google Scholar
Sarashina A, Ueki K, Sasaki T, et al. Effect of renal impairment on the pharmacokinetics, pharmacodynamics, and safety of empagliflozin, a sodium glucose cotransporter 2 inhibitor, in Japanese patients with type 2 diabetes mellitus. Clin Ther. 2014;36(11):1606–15. ArticleCASPubMed Google Scholar
Barnett AH, Mithal A, Manassie J, et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2(5):369–84. ArticleCASPubMed Google Scholar
Tikkanen I, Narko K, Zeller C, et al. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015;38(3):420–8. ArticleCASPubMed Google Scholar
Cherney D, von Eynatten M, Lund SS, et al. Sodium glucose transporter 2 inhibition with empagliflozin reduces microalbuminuria in patients with type 2 diabetes (abstract). Diabetologia. 2014;57(Suppl 1):S333 (abstract 823).
Cherney DZ, Perkins BA, Soleymanlou N, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129(5):587–97. ArticleCASPubMed Google Scholar
Ridderstrale M, Svaerd R, Zeller C, et al. Rationale, design and baseline characteristics of a 4-year (208-week) phase III trial of empagliflozin, an SGLT2 inhibitor, versus glimepiride as add-on to metformin in patients with type 2 diabetes mellitus with insufficient glycemic control. Cardiovasc Diabetol. 2013;12(1):129. ArticlePubMed CentralPubMed Google Scholar
Kadokura T, Zhang W, Krauwinkel W, et al. Clinical pharmacokinetics and pharmacodynamics of the novel SGLT2 inhibitor ipragliflozin. Clin Pharmacokinet. 2014;53(11):975–88. ArticleCASPubMed Google Scholar
Ferrannini E, Veltkamp SA, Smulders RA, et al. Renal glucose handling: impact of chronic kidney disease and sodium-glucose cotransporter 2 inhibition in patients with type 2 diabetes. Diabetes Care. 2013;36(5):1260–5. ArticleCASPubMed CentralPubMed Google Scholar
Kashiwagi A, Takahashi H, Ishikawa H, et al. A randomized, double-blind, placebo-controlled study on long-term efficacy and safety of ipragliflozin treatment in patients with type 2 diabetes mellitus and renal impairment: results of the Long-Term ASP1941 Safety Evaluation in Patients with Type 2 Diabetes with Renal Impairment (LANTERN) study. Diabetes Obes Metab. 2015;17(2):152–60. ArticleCASPubMed Google Scholar
Zell M, Husser C, Kuhlmann O, et al. Metabolism and mass balance of SGLT2 inhibitor tofogliflozin following oral administration to humans. Xenobiotica. 2014;44(4):369–78. ArticleCASPubMed Google Scholar
Schwab D, Portron A, Backholer Z, et al. A novel double-tracer technique to characterize absorption, distribution, metabolism and excretion (ADME) of [14C]tofogliflozin after oral administration and concomitant intravenous microdose administration of [13C]tofogliflozin in humans. Clin Pharmacokinet. 2013;52(6):463–73. ArticleCASPubMed Google Scholar
Schwab D, Portron A, Fukushima Y, et al. Tofogliflozin a selective SGLT2 inhibitor exhibits highly favourable drug properties for use in patients with renal impairment and for combination with other medicines. Diabetologia. 2012;55(Suppl 1):S316 (abstract 767). Google Scholar
Sasaki T, Seino Y, Fukatsu A, et al. Safety, pharmacokinetics, and pharmacodynamics of single and multiple luseogliflozin dosing in healthy Japanese males: a randomized, single-blind, placebo-controlled trial. Adv Ther. 2014;31(3):345–61. ArticleCASPubMed CentralPubMed Google Scholar
Haneda M, Seino Y, Inagaki N, et al. Efficacy and safety of luseogliflozin in various levels of renal function in Japanese patients with type 2 diabetes mellitus: analysis of pooled data from long-term phase 3 trials. Diabetes. 2014;63(Suppl 1):A267 (abstract 1035-P).
Miao Z, Nucci G, Amin N, et al. Pharmacokinetics, metabolism, and excretion of the antidiabetic agent ertugliflozin (PF-04971729) in healthy male subjects. Drug Metab Dispos. 2013;41(2):445–56. ArticleCASPubMed Google Scholar
Kapur A, O’Connor-Semmes R, Hussey EK, et al. First human dose-escalation study with remogliflozin etabonate, a selective inhibitor of the sodium-glucose transporter 2 (SGLT2), in healthy subjects and in subjects with type 2 diabetes mellitus. BMC Pharmacol Toxicol. 2013;14:26. ArticleCASPubMed CentralPubMed Google Scholar