Characterization of Trichomonas vaginalis haemolysis | Parasitology | Cambridge Core (original) (raw)

Extract

The haemolytic activity of live Trichomonas vaginalis organisms was investigated. Optimal haemolysis of human erythrocytes was observed at a parasite to erythrocyte ratio of 1:5 during a 2 h incubation period. No haemolytic activity was detected in concentrated culture supernatants after overnight growth of trichomonads or when parasites were separated from erythrocytes by a 3 μm filter, suggesting a contact-dependent mechanism for haemolysis. The haemolytic activity was temperature-dependent and maximal haemolysis occurred at 37 °C. Treatment of trichomonads with metronidazole reduced levels of haemolysis by > 50%. Maximal haemolysis occurred at the pH range of the vagina during trichomoniasis. N-μ-tosyl-L-lysyl-chloromethyl ketone and iodoacetamide, inhibitors of trichomonad cysteine proteinases, reduced the haemolytic activity of live parasites.

References

Alderete, J. F., Demeš, P., Gombošova, A., Valent, M., Fabušova, M., Janoška, A., Štefanović, J. & Arroyo, R. (1988). Specific parasitism of purified vaginal epithelial cells by Trichomonas vaginalis. Infection and Immunity 56, 2558–62.CrossRefGoogle ScholarPubMed

Alderete, J. F., Demeš, P., Gombošova, A., Valent, M., Janoška, A., Fabušova, H., Kasmala, L., Garza, G. E. & Metcalfe, E. C. (1987). Phenotypes and protein/epitope phenotypic variation among fresh isolates of Trichomonas vaginalis. Infection and Immunity 55, 1037–41.CrossRefGoogle ScholarPubMed

Alderete, J. F. & Garza, G. E. (1985). Specific nature of Trichomonas vaginalis parasitism of host cell surfaces. Infection and Immunity 50, 701–8.CrossRefGoogle ScholarPubMed

Alderete, J. F. & Garza, G. E. (1988). Identification and properties of Trichomonas vaginalis proteins involved in cytadherence. Infection and Immunity 56, 28–33.CrossRefGoogle ScholarPubMed

Alderete, J. F., Kasmala, L., Metcalfe, E. & Garza, G. E. (1986 a). Phenotypic variation and diversity among Trichomonas vaginalis and correlation of phenotype with trichomonal virulence determinants. Infection and Immunity 53, 285–93.CrossRefGoogle ScholarPubMed

Alderete, J. F. & Pearlman, E. (1984). Pathogenic Trichomonas vaginalis cytotoxicity to cell culture monolayers. British Journal of Venereal Disease 60, 99–105.Google ScholarPubMed

Alderete, J. F., Suprun-Brown, L. & Kasmala, L. (1986 b). Monoclonal antibody to a major surface glycoprotein immunogen differentiates isolates and subpopulations of Trichomonas vaginalis. Infection and Immunity 52, 70–5.CrossRefGoogle Scholar

Arroyo, R. & Alderete, J. F. (1989). Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells. Infection and Immunity 57, 2991–7.CrossRefGoogle ScholarPubMed

Cohen, M. S., Black, J. R., Proter, R. A. & Sparling, D. F. (1984). Host defenses and vaginal mucosa. In Bacterial Vaginosis, (ed. Mardh, P. & Taylor Robinson, D.) pp. 13–22. Stockholm: Almquist and Wiksell.Google Scholar

Coombs, G. H. & North, M. J. (1983). An analysis of the proteinases of Trichomonas vaginalis by acrylamide gel electrophoresis. Parasitology 86, 1–6.CrossRefGoogle Scholar

Diamond, L. S. (1957). The establishment of various trichomonads of animals and man in axenic cultures. Journal of Parasitology 43, 488–90.CrossRefGoogle ScholarPubMed

Honigberg, B. M. (1978). Trichomonads of importance in human medicine. In Parasitic Protozoa, vol. 2 (ed. Kreier, J. P.) pp. 275–454. New York: Academic Press.Google Scholar

Krieger, J. N., Poisson, M. A. & Rein, M. F. (1983). Beta-hemolytic activity of Trichomonas vaginalis correlates with virulence. Infection and Immunity 41, 1291–5.CrossRefGoogle ScholarPubMed

Krieger, J. N., Ravdin, J. I. & Rein, M. F. (1985). Contact-dependent cytopathogenic mechanisms of Trichomonas vaginalis. Infection and Immunity 50, 778–86.CrossRefGoogle ScholarPubMed

Nelson, G. L. (1967). Lipid composition of erythrocytes in various mammalian species. Biochemica et Biophysica Acta 44, 221–32.CrossRefGoogle Scholar

Peterson, K. M. & Alderete, J. F. (1982). Host plasma proteins on the surface of pathogenic Trichomonas vaginalis. Infection and Immunity 37, 755–62.CrossRefGoogle ScholarPubMed

Peterson, K. M. & Alderete, J. F. (1984 a). Trichomonas vaginalis is dependent on uptake and degradation of human low density lipoproteins. Journal of Experimental Medicine 160, 1261–72.CrossRefGoogle ScholarPubMed

Peterson, K. M. & Alderete, J. F. (1984 b). Iron uptake and increased intracellular enzyme activity follow lactoferrin binding by Trichomonas vaginalis receptors. Journal of Experimental Medicine 160, 398–410.CrossRefGoogle ScholarPubMed

Pindak, F., Gardner, J. W. A. & Pindak, M. M. (1986). Growth and cytopathogenicity of Trichomonas vaginalis in tissue cultures. Journal of Clinical Microbiology 23, 672–8.CrossRefGoogle ScholarPubMed

Rennie, R. P., Freer, J. H. & Arbuthnott, J. P. (1974). The kinetics of erythrocyte lysis by Escherichia coli haemolysin. Journal of Medical Microbiology 7, 189–95.CrossRefGoogle ScholarPubMed