The physiology of excystment of the metacercaria of Fasciola hepatica L. | Parasitology | Cambridge Core (original) (raw)

Extract

Excystment of the metacercaria of Fasciola hepatica is an active process and occurs in two stages—activation and emergence. Activation is initiated by high concentrations of carbon dioxide, reducing conditions and a temperature about 39 °C. The reducing conditions increase the rate of action of the other two stimuli. The carbon dioxide stimulus need only be applied for 5 min, but the exposure time to the reducing conditions has to be of the order of 30 min. Changes in the order of application of the stimuli carbon dioxide and redox potential have no effect.

The second phase, emergence, is triggered by bile. Metacercariae were held in an activated condition for 24 h, and when bile was added emergence took place normally.

During excystment the metacercariae exhibit a complex behaviour pattern. After activation there is an initial period of rotatory activity, but after about 20 min a quiescent phase ensues when the metacercariae contract away from the cyst wall at an imperceptible rate. This behaviour occurs in response to stimulus from a high concentration of carbon dioxide and a temperature about 39 °C. When the metacercariae are exposed to bile the second phase of activity is initiated, consisting of antero-posterior thrusting movements directed against the ventral side of the cyst wall. Within about 15 min the juvenile flukes escape through a small circular hole in the ventral surface of the cyst wall which corresponds to the ventral plug region.

References

Ameel, D. J. (1934). Paragonimus, its life history in North America and its taxonomy (Trematoda: Troglotrematidae). Am. J. Hyg. 19, 279–317.Google Scholar

Balasingam, E. (1962). Studies on fascioliasis of cattle and buffaloes in Singapore due to Fasciola gigantica Cobbold. Ceylon vet. J. 10, 10–29.Google Scholar

Barnett, A. J. G. & Reid, R. L. (1961). Reactions in the Rumen. 252 pp. London: Arnold.Google Scholar

Bartnicki-Garcia, S., Eren, J. & Pramer, D. (1964). Carbon dioxide-dependent morphogenesis in Arthrobotrys conoides. Nature, Lond., 204, 804.CrossRefGoogle Scholar

Bergeim, O., Kleinberg, J. & Kirch, E. R. (1945). Oxidation-reduction potentials of the contents of the gastrointestinal tract. J. Bact. 49, 453–8.CrossRefGoogle ScholarPubMed

Bezubik, B. & Furmaga, S. (1959). The helminth parasites in Macasus rhesus Audeb., from China. Acta parasit. pol. 7, 591–8.Google Scholar

Bono, G. Del & Pellegrini, N. (1959). Enzoozia nel corigles da Distomum hepaticum, Linne 1758. Zooprofilassi, 14, 379–91.Google Scholar

Bullock, T. H. (1957). The trigger concept in biology. In Physiological Triggers and Discontinuous Rate Processes, pp. 1–8. Ed. Bullock, T. H.. Washington: American Physiological Society.Google Scholar

Campbell, W. C. (1963). The efficacy of surface active agents in stimulating the evagination of cysticerci in vitro . J. Parasit. 49, 81–4.CrossRefGoogle ScholarPubMed

Ching, H. L. (1963 a). The description and life cycle of Maritrema laricola sp.n. (Trematoda Microphallidae). Can. J. Zool. 41, 881–8.CrossRefGoogle Scholar

Ching, H. L. (1963 b). The life cycle and bionomics of Levinseniella charadriformis Young, 1949 (Trematoda: Microphallidae). Can. J. Zool. 41, 889–99.CrossRefGoogle Scholar

Dawes, B. (1961). On the early stages of Fasciola hepatica penetrating into the liver of an experimental host, the mouse, a histological picture. J. Helminth. (R. T. Leiper Suppl.), pp. 41–52.CrossRefGoogle Scholar

Dawes, B. (1963). The migration of juvenile forms of Fasciola hepatica L. through the walls of the intestines in the mouse with some observations on food and feeding. Parasitology, 53, 109–22.CrossRefGoogle Scholar

Dawes, B. & Hughes, D. L. (1964). Fasciolasis: the invasive stages of Fasciola hepatica in mammalian hosts. In Advances in Parasitology, vol. 2, pp. 97–168. Ed. Dawes, B.. London: Academic Press.Google Scholar

Delyamure, S. L. (1955). The helminth fauna of marine mammals in the light of their ecology and phylogeny. Izdatelstsvo Akademii Nauk SSSR, 517 pp.Google Scholar

Dixon, K. E. (1964). Excystment of metacercariae of Fasciola hepatica L. in vitro. Nature, Lond., 202, 1240–1.CrossRefGoogle Scholar

Dixon, K. E. (1965). The structure and histochemistry of the cyst wall of the metacercaria of Fasciola hepatica L. Parasitology 55, 215–26.CrossRefGoogle ScholarPubMed

Dixon, K. E. & Mercer, E. H. (1964). The fine structure of the cyst wall of the metacercaria of Fasciola hepatica. Qt. Jl microsc. Sci. 105, 385–9.Google Scholar

Dixon, K. E. & Mercer, E. H. (1965). The fine structure of the nervous system of the cercaria of the liver fluke, Fasciola hepatica L. J. Parasit. 51, 967–76.CrossRefGoogle ScholarPubMed

Doran, D. J. & Farr, M. M. (1962). Excystation of the poultry coccidium Eimeria acervulina. J. Protozool. 9, 154–61.CrossRefGoogle ScholarPubMed

Dougherty, E. C., Hansen, E. L., Nicholas, W. L., Mollett, J. A. & Yarwood, E. A. (1959). Axenic cultivation of Caenorhabditis briggsae (Nematoda: Rhabditidae) with unsupplemented and supplemented chemically defined media. Ann. N.Y. Acad. Sci. 77, 176–217.CrossRefGoogle Scholar

Dunn, A. D. & Thompson, W. (1923). The carbon dioxide and oxygen content of stomach gas in normal persons. Arehs intern. Med. 31, 1–8.Google Scholar

Edsall, J. T. & Wyman, J. (1958). Biophysical Chemistry, vol. 1, 699 pp. New York: Academic Press.Google Scholar

Edwards, W. T. (1943). Fascioliasis in a mule. Jl R. Army vet. Cps, 15, 12.Google Scholar

Ezzat, M. A. E., Tadros, G. & Rifaie, A. (1963). Parenteral treatment of fascioliasis in cattle and buffaloes in Egypt. Vet. Rec. 75, 273–4.Google Scholar

Fairbairn, D. (1960). Physiologic aspects of egg hatching and larval exsheathment in nematodes. In Host Influence on Parasite Physiology, pp. 50–64. Ed. Stauber., L. A.New Brunswick, N.J.: Rutgers University Press.Google Scholar

Farr, M. M. & Doran, D. J. (1962). Comparative excystation of four species of poultry coccidia. J. Protozool. 9, 403–6.CrossRefGoogle ScholarPubMed

Faust, E. C. & Khaw, O. K. (1927). Studies on Clonorchis sinensis (Cobbold). Am. J. Hyg. Mongr. Ser. no. 8, 284 pp.Google Scholar

Ferguson, M. S. (1940). Excystment and sterilization of metacercariae of the avian strigeid trematode, Posthodiplostomum minimum, and their development into adult worms in sterile cultures. J. Parasit. 26, 359–72.CrossRefGoogle Scholar

Hemenway, M. (1948). Studies on excystment of Clinostomum metacercariae by use of artificial digestion. Proc. Iowa Acad. Sci. 55, 375–81.Google Scholar

Hewitt, L. F. (1950). Oxidation-reduction potentials. In Bacteriology and Biochemistry, 6th ed., 216 pp. Edinburgh: E. and S. Livingstone.Google Scholar

Hoeppli, R. & Wu, C. L. (1952). Parasitic infections of the human liver of interest to medical workers in China. Chin. med. J. 70, 182–212.Google ScholarPubMed

Hoffman, G. L. (1958). Experimental studies on the cercariae and metacercaria of a Strigeoid Trematode, Posthodiplostomum minimum. Expl Parasit. 7, 23–50.CrossRefGoogle ScholarPubMed

Holmes, R. G. (1962). Fascioliasis in coypus (Myocastor coypus). Vet. Rec. 74, 1552.Google Scholar

Hsu, H. F. & Wang, L. S. (1938). Studies on certain problems of Clonorchis sinensis. IV. Notes on the resistance of cysts in fish flesh, the migration route and the morphology of the young worms in the final host. Chin. med. J. Suppl. 2, 385–400.Google Scholar

Hughes, D. L. (1959). Chemotherapy of experimental Fasciola hepatica infections. M.Sc. Thesis, University of London.Google Scholar

Hunsgate, R. E. (1960). Factors influencing the rumen protozoa. In Host Influence on Parasite Physiology, pp. 24–40. Ed. Stauber., L. A.New Brunswick, N.J.: Rutgers University Press.Google Scholar

Hunter, W. S. & Chait, D. C. (1952). Notes on excystment and culture in vitro of the microphallid trematode, Gynaecotyla adunca (Linton, 1905). J. Parasit. 38, 87.CrossRefGoogle Scholar

Hyden, S. (1955). The recovery of polyethylene glycol after passage through the digestive tract. K. Lantbr Högsk. Annlr. 22, 411–24.Google Scholar

Hyden, S. (1961 a). Determination of the amount of fluid in the reticulorumen of the sheep and its rate of passage to the omasum. K. LantbrHögsk. Annlr, 27, 51–79.Google Scholar

Hyden, S. (1961 b). The use of reference substances and the measurement of flow in the alimentary tract. In Digestive Physiology and Nutrition of the Ruminant, pp. 35–46. Ed. Lewis, D.London: Butterworth.Google Scholar

Jackson, A. R. B. (1962). Excystation of Eimeria arloingi (Marotel, 1905): stimuli from the host sheep. Nature, Lond. 194, 847–9.CrossRefGoogle Scholar

Johnston, T. H. (1909). The Entozoa of Monotremata and Australian Marsupialia. No. 1. Proc. Linn. Soc. N.S.W. 34, 514–23.Google Scholar

Johnston, T. H. (1911). The Entozoa of Monotremata and Australian Marsupialia. No. 2. Proc. Linn. Soc. N.S.W. 36, 47–57.Google Scholar

Kobayashi, A.et al. (1959). Studies on excystation of the metacercaria of Metagonimus yokogawai. Acta Sch. med. Gifu. 7, 822–828. (abstract in Helminth. Abstr. 29, 221.)Google Scholar

Kovacs, F. & Nemeseri, L. (1958). Die Behandlung der Leberegelkrankheit von Schweinen durch intramusculäre Verabreichung von Tetrachlorkohlenstoff. Acta vet. hung. 8, 165–71.Google Scholar

Krull, W. H. (1933). Studies on the life history of a frog lung fluke, Haematoloechus complexus (Seely, 1906) Krull, n.comb. Z. ParasitKde. 6, 192–206.CrossRefGoogle Scholar

Krull, W. H. & Price, H. F. (1932). Studies on the life history of Diplodiscus temperatus (Stafford) from the frog. Occ. Pap. Mus. Zool. Univ. Mich. no. 237, 39 pp.Google Scholar

Larsh, J. E. (1947). The relationship in mice of intestinal emptying time and natural resistance to Hymenolepis. J. Parasit. 33, 79–84.CrossRefGoogle ScholarPubMed

Lengy, G. (1960). Study on Paramphistomum microbothrium Fischoeder, 1901, a rumen parasite of cattle in Israel. Bull. Res. Coun. Israel. (Sect. B), 9, 71–130.Google Scholar

Loomis, W. E. (1959). Feedback control of growth and differentiation. Carbon dioxide tension and related metabolic variables. In Cell, Organism and Milieu, pp. 272–94. Ed. Rudnick, D.. New York: Ronald Press.Google Scholar

McDonald, I. W. (1958). The utilization of ammonia-nitrogen by the sheep. Proc. Aust. Soc. Anim. Prod. 2, 46–51.Google Scholar

Macchioni, G. (1962). Su di un raro case di distomatosi epatica spontanea da Fasciola hepatica nel ratio delle chiauche (Rattus norvegicus). Annali Fac. Med. vet. Univ. Pisa, 15, 136–9.Google Scholar

Malanowska, T. (1962). Przypadek motylicy watrobowej u zaja¸ca. Medycyna wet. 18, 464.Google Scholar

Moir, R. J., Somers, M. & Waring, H. (1956). Studies on marsupial nutrition. 1. Ruminantlike digestion in a herbivorous marsupial (Setonix brachyurus Quoy & Gaimard). Aust. J. biol. Sci. 9, 293–304.CrossRefGoogle Scholar

Oshima, T. & Kihata, M. (1958). Studies on the excystation of the metacercariae of Paragonimus westermani. 1. Especially on the effect of bile salts. Bull. Inst. publ. Hlth, Tokyo, 7, 256–69.Google Scholar

Oshima, T., Yoshida, Y. & Kihata, M. (1958). Studies on the excystation of the metacercariae of Paragonimus westermani. 2. Influence of pepsin pretreatment on the effect of bile salts. Bull. Inst. publ. Hlth, Tokyo, 7, 270–4.Google Scholar

Pankhurst, J. W. (1963). Liver fluke in donkeys. Vet. Rec. 75, 434.Google Scholar

Paperna, I. & Lengy, J. (1963). Notes on a new subspecies of Bolbophorus confusus (Krause, 1914) Dubois 1935 (Trematoda: Diplostomatidae), a fish-transmitted bird parasite. Israel J. Zool. 12, 171–82.Google Scholar

Price, E. W. (1932). The trematode parasites of marine mammals. Proc. U.S. natn. Mus. 81, art. 13, 68 pp.CrossRefGoogle Scholar

Read, C. P. (1950). The vertebrate small intestine as an environment for parasitic helminths. Rice Inst. Pamph. 37, 1–94.Google Scholar

Read, C. P. (1955). Intestinal physiology and the host–parasite relationship. In Some Physiological Aspects and Consequences of Parasitism, pp. 27–43. Ed. Cole, W. H., New Brunswick, N.J.: Rutgers University Press.Google Scholar

Read, C. P. & Voge, M. (1954). The size attained by Hymenolepis diminuta in different host species. J. Parasit. 40, 88–9.CrossRefGoogle ScholarPubMed

Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. cell Biol. 17, 208–12.CrossRefGoogle ScholarPubMed

Robinson, C. S., Luckey, H. & Mills, H. (1943). Factors affecting the hydrogen ion concentration of the contents of the small intestine. J. biol. Chem. 147, 175–81.CrossRefGoogle Scholar

Rogers, W. P. (1961). The Nature of Parasitism, 287 pp. London: Academic Press.Google Scholar

Rogers, W. P. & Sommerville, R. I. (1963). The infective stage of nematode parasites and its significance in parasitism. In Advances in Parasitology, vol. 1, pp. 109–77. Ed. Dawes, B.. London: Academic Press.Google Scholar

Ryklan, L. R. & Schmidt, C. L. A. (1944). The oxidation potentials of cystine–cysteine and related systems. Univ. Calif. Publs Physiol. 8, 257–75.Google Scholar

Savin, Z. (1960). Spontaneous fascioliasis in Citellus citellus. Acta vet., Beogr., 10, 121–2.Google Scholar

Schmid, F. (1938). Akute Distomatose und junge Dassellarven bei einem Reh. Dt. tierärztl. Wschr. 46, 257.Google Scholar

Schumacher, W. (1938). Untersuchungen über den Wanderungsweg und die Entwicklung von Fasciola hepatica L. im Endwirt. Z. ParasitKde. 10, 608–43.CrossRefGoogle Scholar

Silverman, P. H. (1954). Studies on the biology of some tapeworms of the genus Taenia 1. Factors affecting hatching and activation of Taeniid ova, and some criteria of their viability. Ann. trop. Med. Parasit. 48, 207–15.CrossRefGoogle Scholar

Sinitsin, D. F. (1914). Neue Tatsachen über die Biologie der Fasciola hepatica L. Zentbl. Bakt. ParasitKde, 74, 280–5.Google Scholar

Smyth, J. D. (1962). Lysis of Echinococcus granulosus by surface active agents in bile and the role of this phenomenon in determining host specificity in helminths. Proc. R. Soc. B, 156, 553–72.Google Scholar

Smyth, J. D. & Haslewood, G. A. D. (1963). The biochemistry of bile as a factor in determining host specificity in intestinal parasites, with particular reference to Echinococcus granulosus. Ann. N.Y. Acad. Sci. 113, 234–60.CrossRefGoogle Scholar

Sobotka, H. (1937). Physiological Chemistry of the Bile, Baltimore: Williams & Wilkins.Google Scholar

Susuki, S. (1931). Researches into the life history of Fasciola hepatica and its distribution in Formosa. J. med. Ass. Formosa, 30, 97–102.Google Scholar

Tappeiner, H. (1882). Vergleichende Untersuchung der Darmgase. Hoppe-Seyler's Z. physiol. Chem. 6, 432–79.Google Scholar

Tappeiner, H. (1883). Die Gase des Verdauungsschlauches der Pflanzenfresser. Z. biol. 19, 228–79.Google Scholar

Trofimov, V. P. & Alyabeva, L. L. (1959). Fascioliasis of guineapigs. Veterinariya 36, 43.Google Scholar

Turner V. (1961). Fascioloza konja. Vet. Glasn. 15, 389–93.Google Scholar

Turner, A. W. & Hodgetts, V. E. (1955). Buffer systems in the rumen of the sheep. 1. pH and bicarbonate concentration in relationship to pCO2. Aust. J. agric. Res. 6, 115–24.CrossRefGoogle Scholar

Vogel, H. (1934). Der Entwicklungszyklus von Opisthorchis felineus (Riv.). Zoologica, Stuttg., 33, 1–103.Google Scholar

Washburn, L. E. & Brody, S. (1937). Methane, hydrogen, and carbon dioxide production in the digestive tract of ruminants in relation to the respiratory exchange. Mo Agric. Expt. Sta. Res. Bull. no. 263, 40 pp.Google Scholar

Wikerhauser, T. (1960). A rapid method for determining the viability of Fasciola hepatica metacercariae. Am. J. vet. Res. 21, 895–7.Google ScholarPubMed

Wright, W. R. (1927). Studies on larval trematodes from North Wales. Part 1. Observations on the redia, cercaria and cyst of Fasciola hepatica. Ann. trop. Med. Parasit. 21, 47–56.CrossRefGoogle Scholar

Wykoff, D. E. & Lepes, T. J. (1957). Studies on Clonorchis sinensis. I. Observations on the route of migration in the definitive host. Am. J. trop. Med. Hyg. 6, 1061–5.CrossRefGoogle ScholarPubMed

Yogore, M. G., Cabrera, B. J., Araullo, T. P. & Cabalteja, E. F. (1959). Studies on paragonimiasis. VIII. On the excystation of Paragonimus metacercariae. Philipp. J. Sci. 88, 61–80.Google Scholar

Yokogawa, S., Cort, W. W. & Yokogawa, M. (1960). Paragonimus and paragonimiasis Expl Parasit. 10, 81–205.CrossRefGoogle Scholar