Fractal analysis of the boundary between white matter and cerebral cortex in magnetic resonance images: a controlled study of schizophrenic and manic-depressive patients | Psychological Medicine | Cambridge Core (original) (raw)

Synopsis

This paper reports development of a computerized (‘box-counting’) method for estimation of fractal dimension (FD) of the magnetic resonance image (MRI) boundary between cerebral cortex and white matter; and the application of this method to MRIs of 39 schizophrenics (SZs), 23 manic-depressives (MDs) and 31 controls (CONs). Mean FD across all diagnostic groups was 1·402; 95% confidence interval (CI) 1·399 to 1·406. Mean FD was greater in boundaries extracted from manic-depressive patients than in boundaries extracted from controls (difference between MD and CON mean FDs = 0·008; 95% CI −0·002 to +0·018); and less in schizophrenics than in controls (difference between SZ and CON mean FDs = −0·003; 95% CI −0·011 to +0·005). Mean FD was positively correlated with subcortical volume and anterior cerebral volume, and negatively correlated with sulcal cerebrospinal fluid volume. Significant differences in mean FD between diagnostic groups were demonstrated by analysis of covariance (ANCOVA; P < 0·01), with age and volumetric measures of brain size as covariates; and manic-depressive boundaries were shown to have significantly greater values for residual FD (after controlling for effects of brain size) than boundaries extracted from controls (t test; P < 0·05). It is proposed that FD is a useful measure of clinically relevant differences in the complexity of MRI boundaries.

References

Altshuler, L. L., Conrad, A., Hauser, P., Li, X., Guze, B. H., Denikoff, K., Tourtellotte, W. & Post, R. (1991). Reduction of temporal lobe volume in bipolar disorder: a preliminary report of magnetic resonance imaging. Archives of General Psychiatry 48, 482–483.Google Scholar

American Psychiatric Association (1987). Diagnostic and Statistical Manual of Mental Disorders, Revised 3rd edn. American Psychiatric Association: Washington, DC.Google Scholar

Andreasen, N. C., Swayze, V., Flaum, M., Alliger, R. & Cohen, G. (1990). Ventricular abnormalities in affective disorder: clinical and demographic correlates. American Journal of Psychiatry 147, 893–900.Google ScholarPubMed

Barnsley, M. F. (1988). Fractal modelling of real world images. In The Science of Fractal Images (ed. Peitgen, H. O. and Saupe, D.), pp. 219–242. Springer-Verlag: New York.Google Scholar

Besson, J. A. O., Henderson, J. G., Foreman, E. I. & Smith, F. W. (1987). An NMR study of lithium responding manic depressive patients. Magnetic Resonance Imaging 5, 273–277.CrossRefGoogle ScholarPubMed

Bullmore, E. T., Brammer, M. J., Alarcon, G. & Binnie, C. D. (1992). A new technique for fractal analysis applied to human, intracerebrally recorded, ictal electroencephalographic signals. Neuroscience Letters 146, 227–230.CrossRefGoogle ScholarPubMed

Caldwell, C. B., Stapleton, S. J. & Holdsworth, D. W. (1990). Characterisation of mammographic parenchymal pattern by fractal dimension. Physical Medicine and Biology 35, 235–247.Google Scholar

Cargill, E. B., Donohoe, K. J., Kolodny, G., Parker, A. J. & Duane, P. (1991). Estimation of fractal dimension of parenchymal organs based on power spectral analysis of nuclear medicine scans. Progress in Clinical and Biological Research 363, 557–570.Google Scholar

Carpenter, L. (1992). Data facilities. In Scientific Visualisation (ed. Brodlie, K. W., Carpenter, L. A., Earnshaw, R. A., Gallop, J. R., Hubbold, R. J., Mumford, A. M., Osland, C. D. and Quarendon, P.), pp. 87–112. Springer-Verlag: Berlin.Google Scholar

Casanova, M. F., Goldberg, T. E., Suddath, R. L., Daniel, D. G., Rawlings, R., Lloyd, D. G., Loats, H. L., Kleinman, J. E. & Weinberger, D. R. (1990). Quantitative shape analysis of the temporal and prefrontal lobes of schizophrenic patients: a magnetic resonance imaging study. Journal of Neuropsychiatry and Clinical Neurosciences 2, 363–372.Google Scholar

Coffey, C. E., Wilkinson, W. E., Weiner, R. D., Parashos, I. A., Djang, W. T., Webb, M. C., Figiel, G. S. & Spritzer, C. E. (1993). Quantitative cerebral anatomy in depression. A controlled magnetic resonance imaging study. Archives of General Psychiatry 50, 7–16.CrossRefGoogle ScholarPubMed

Cook, M. J., Free, S. L., Straughan, K., Manford, M. R. A., Fish, D. R., Shorvon, S. D. & Stevens, J. M. (1994). Fractal description of normal and abnormal cerebral gyral patterns. Brain Topography (in the press.)Google Scholar

Dupont, R. M., Jernigan, T. L., Butters, N., Delis, D., Hesselink, J. R., Heindel, W. & Gilli, J. C. (1990). Subcortical abnormalities detected in bipolar affective disorder using magnetic resonance imaging. Archives of General Psychiatry 47, 55–59.Google Scholar

Fortin, C., Kumaresan, R., Ohley, W. & Hoefer, S. (1992). Fractal dimension in the analysis of medical images. IEEE Engineering in Medicine and Biology 11, 65–71.CrossRefGoogle Scholar

Goldberger, A. L., Rigney, D. R. & West, B. J. (1990). Chaos and fractals in human physiology. Scientific American 46, 42–49.Google Scholar

Harvey, I., Tofts, P. S., Morris, J. K., Wicks, D. A. & Ron, M. A. (1991). Sources of T 1 variance in normal human white matter. Magnetic Resonance Imaging 9, 53–59.Google Scholar

Harvey, I., Ron, M. A., du Boulay, G., Wicks, D., Lewis, S. W. & Murray, R. M. (1993). Reduction of cortical volume in schizophrenia on magnetic resonance imaging. Psychological Medicine 23, 591–604.Google Scholar

Harvey, I., Persaud, R., Ron, M. A., Barker, G. & Murray, R. M. (1994). Volumetric MRI measurements in bipolars compared with schizophrenics and healthy controls. Psychological Medicine 24, 689–699.Google Scholar

Honda, E., Domon, M. & Sasaki, T. (1991). A method for determination of fractal dimension of sialographic images. Investigative Radiology 26, 894–901.Google Scholar

Johnson, G., Miller, D. H., MacManus, D., Tofts, P. S., du Boulay, E. P. & MacDonald, W. I. (1987 a). STIR sequences in NMR imaging of the optic nerve. Neuroradiology 29, 238–245.Google Scholar

Johnson, G., Ormerod, I. E., Barnes, D., Tofts, P. S. & MacManus, D. (1987 b). Accuracy and precision in the measurement of relaxation times in NMR images. British Journal of Radiology 60, 143–153.CrossRefGoogle Scholar

Kelsoe, J. R., Cadet, J. L., Pickar, D. & Weinberger, D. R. (1988). Quantitative neuroanatomy in schizophrenia. A controlled magnetic resonance imaging study. Archives of General Psychiatry 45, 533–541.Google Scholar

King, C. (1991). Fractal and chaotic dynamics in nervous systems. Progress in Neurobiology 36, 279–308.Google Scholar

Kuklinski, W. S., Chandra, K., Ruttirmann, U. E. & Webber, R. L. (1989). Applications of fractal texture analysis to segmentation of dental radiographs. Proceedings SPIE 1092, 111–117.CrossRefGoogle Scholar

Lancet Editorial. (1991). Fractals and medicine. Lancet 338, 1425–1426.Google Scholar

Majumdar, S. & Prasad, R. R. (1988). The fractal dimension of cerebral surfaces using magnetic resonance images. Computers in Physics Nov/Dec 1988, 69–73.CrossRefGoogle Scholar

Mandelbrot, B. B. (1977). The Fractal Geometry of Nature. W. H. Freeman and Co.: New York.Google Scholar

Nelson, H. E. (1982). National Adult Reading Test: Manual. NFER-Nelson: Windsor.Google Scholar

Peitgen, H.-O., Jurgens, H. & Saupe, D. (1992). Chaos and Fractals. New Frontiers of Science. Springer-Verlag: New York.CrossRefGoogle Scholar

Robb, R. A. & Barillot, C. (1989). Interactive display and analysis of 3-D medical images. IEEE Transactions on Medical Imaging 8, 217–226.Google Scholar

Schroeder, M. (1991). Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. W. H. Freeman and Co.: New York.Google Scholar

Shaw, D. M., Frizel, D. & Camps, F. E. (1969). Brain electrolytes in depressive and alcoholic suicides. British Journal of Psychiatry 115, 69–79.Google Scholar

Spitzer, R. L., Endicott, J. & Robins, E. (1978). Research Diagnostic Criteria. Biometrics Research, New York State Research Institute: New York.CrossRefGoogle ScholarPubMed

Struzik, Z. R. & Dooijes, E. H. (1994). Towards fractal metrology. In Fractals in the Natural and Applied Sciences (ed. Novak, M. M.), pp. 417–430. Elsevier Science, B.V.: Amsterdam.Google Scholar

Suddath, R. L., Christison, G. W., Fuller Torrey, E., Casanova, M. F. & Weinberger, D. R. (1990). Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. New England Journal of Medicine 322, 789–794.CrossRefGoogle ScholarPubMed

Zipursky, R. B., Lim, K. O., Sullivan, E. V., Brown, B. W. & Pfefferbaum, A. (1992). Widespread cerebral gray matter volume deficits in schizophrenia. Archives of General Psychiatry 49, 195–205.CrossRefGoogle ScholarPubMed