Variability for the fatty acid composition of the seed oil in a germplasm collection of the genus Brassica (original) (raw)
References
Alonso, L.C., O. FernándezSerrano & J. FernándezEscobar, 1991. The outset of a new oilseed crop: Brassica carinata with lowerucic acid content. In: GCIRC (Ed), Proceedings of the 8th International Rapeseed Congress, Saskatoon, Canada, 9–11 July 1991, pp. 170–176, GCIRC, Saskatoon, Canada. Google Scholar
Appelqvist, L.É., 1971. Lipids in Cruciferae: VIII. The fatty acid composition of seeds of some wild or partially domesticated species. J. Am. Oil Chem. Soc. 48: 740–744. Google Scholar
Carruthers, S.P., 1995. Potential developments and marketsize limitations for new oilseedrape opportunities. In: GCIRC (Ed), Proceedings of the 9th International Rapeseed Congress, Cambridge, U.K., 4–7 July 1995, pp. 1327–1331, Henry Ling Limited, Dorchester, U.K. Google Scholar
Daun, J.K. & P.C. Williams, 1995. Use ofNIR spectroscopy to determine quality factors in harvest surveys of canola. In: GCIRC (Ed), Proceedings of the 9th International Rapeseed Congress, Cambridge, U.K. 4–7 July 1995, pp. 864–866, Henry Ling Limited, Dorchester, U.K. Google Scholar
Downey, R.K., 1964. A selection of Brassica campestris L. containing no erucic acid in its seed oil. Can. J. Plant Sci. 44: 295. Google Scholar
Friedt, W. & W. Lühs, 1995. Development in the breeding of rapeseed oil for industrial purposes. In: GCIRC (Ed), Proceedings of the 9th International Rapeseed Congress, Cambridge, U.K. 4–7 July 1995, pp. 437–448, Henry Ling Limited, Dorchester, U.K. Google Scholar
Getinet, A., G. Rakow, J.P. Raney & R.K. Downey, 1994. Development of zero erucic acid Ethiopian mustard through interspecific cross with zero erucic acid Oriental mustard. Can. J. Plant Sci. 74: 793–795. Google Scholar
Gladis, T., 1989. Die Gattung Brassica L. und die Reproduktion entomophiler Pflanzensippen in Genbanken. PhD Thesis, Zentralinstitut für Genetik und Kulturpflanzenforschung, Gatersleben, Germany. Google Scholar
Gladis, T. & K. Hammer, 1990. Die Gaterslebener _Brassica_Kollektion eine Einführung. Kulturpflanze 38: 121–156. Google Scholar
Kirk, J.T.O. & R.N. Oram, 1981. Isolation of erucic acidfree lines of Brassica juncea: Indian mustard now a potential oilseed crop in Australia. J. Aust. Inst. Agric. Sci. 47: 51–52. Google Scholar
Kumar, P.R. & S. Tsunoda, 1978. Fatty acid spectrum of mediterranean wild Cruciferae. J. Am. Oil Chem. Soc. 55: 320–323. Google Scholar
Kumar, P.R. & S. Tsunoda, 1980. Variation in oil content and fatty acid composition among seeds from the Cruciferae. In: Tsunoda, S., K. Hinata & C. GómezCampo (Eds), Brassica Crops and Wild Allies, pp. 235–252, Japan Scientific Societies Press, Tokyo. Google Scholar
Lühs, W. & W. Friedt, 1995. Natural fatty acid variation in the genus Brassica and its exploitation through resynthesis. Eucarpia Cruciferae Newsl. 17: 14–15. Google Scholar
Murphy, D.J., 1995. The use of conventional and molecular genetics to produce new diversity in seed oil composition for the use of plant breeders – progress, problems and future prospects. Euphytica 85: 433–440. Google Scholar
Olsson, G., 1984. Selection for low erucic acid in Brassica juncea. Sveriges Utsädesf. T. 94: 187–190. Google Scholar
Pleines, S. & W. Friedt, 1988. Breeding for improved C18-fatty acid composition in rapeseed (Brassica napus L.). Fat Sci. Technol. 90: 167–171. Google Scholar
Prakash, S. & K. Hinata, 1980. Taxonomy, cytogenetics and origin of crop Brassicas, a review. Opera Bot. 55: 1–57. Google Scholar
Röbbelen, G., 1991. Rapeseed in a changing world: plant production potential. In: GCIRC (Ed), Proceedings of the 8th International Rapeseed Congress, Saskatoon, Canada, 9–11 July 1991, pp. 29–38, GCIRC, Saskatoon, Canada. Google Scholar
Röbbelen, G. & W. Thies, 1980. Biosynthesis of seed oil and breeding for improved oil quality of rapeseed. In: Tsunoda, S., K. Hinata & C. GómezCampo (eds.), Brassica Crops and Wild Allies, pp. 253–283, Japan Scientific Societies Press, Tokyo. Google Scholar
Snogerup, S., 1980. The wild forms of the Brassica oleracea group (2n=18) and their possible relations to the cultivated ones. In: Tsunoda, S., K. Hinata & C. Gómez–Campo (Eds), Brassica Crops and Wild Allies, pp. 121–132, Japan Scientific Societies Press, Tokyo. Google Scholar
Stefansson, B.R., F.W. Hougen & R.K. Downey, 1961. Note on the isolation of rape plants with seed oil free from erucic acid. Can. J. Plant Sci. 41: 218–219. Google Scholar
Thies, W, 1971. Schnelle und einfache Analysen der Fettsäurezusammensetzung in einzelnen Raps-Kotyledonen I. Gaschromatographische und papierchromatographische Methoden. Z. Pflanzenzüchtg. 65: 181–202. Google Scholar
Velasco, L. & H.C. Becker, 1998. Estimating the fatty acid composition of the oil in intactseed rapeseed (Brassica napus L.) by near-infrared reflectance spectroscopy. Euphytica (in press).
Velasco, L., J.M. Fernández-Martínez, & A. De Haro, 1997a. Determination of the fatty acid composition of the oil in intactseed mustard by nearinfrared reflectance spectroscopy. J. Am. Oil Chem. Soc. 74, 1595–1602. Google Scholar
Velasco, L., J.M. FernándezMart ínez & A. DeHaro, 1997b. Induced variability for C18 unsaturated fatty acids in Ethiopian mustard. Can. J. Plant Sci. 77: 91–95. Google Scholar
Vollmann, J., A. Damboeck, S. Baumgartner & P. Ruckenbauer, 1997. Selection of induced mutants with improved linolenic acid content in camelina. Fett/Lipid 99: 357–361. Google Scholar