Jasmonate-inducible plant defences cause increased parasitism of herbivores (original) (raw)

References

  1. Karban, R. & Baldwin, I. T. Induced Responses to Herbivory(Univ. of Chicago Press, Chicago, Illinois, 1997).
    Book Google Scholar
  2. Meyer, A., Miersch, O., Buttner, C., Dathe, W. & Sembdner, G. Occurrence of the plant growth regulator jasmonic acid in plants. J. Plant Growth Regul. 3, 1–8 (1984).
    Article CAS Google Scholar
  3. Farmer, E. E. New fatty acid based signals: a lesson from the plant world. Science 276, 912–913 (1997).
    Article CAS Google Scholar
  4. McConn, M., Creelman, R. A., Bell, E., Mullet, J. E. & Browse, J. Jasmonate is essential for insect defense in Arabidopsis . Proc. Natl Acad. Sci. USA 93, 5473–5477 (1997).
    Article ADS Google Scholar
  5. Thaler, J. S., Stout, M. J., Karban, R. & Duffey, S. S. Exogenous jasmonates simulate insect wounding intomato plants, Lycopersicon esculentum, in the laboratory and field. J. Chem. Ecol. 22, 1767–1781 (1996).
    Article CAS Google Scholar
  6. Broadway, R. M., Duffey, S. S., Pearce, G. & Ryan, C. A. Plant proteinase inhibitors: a defense against herbivorous insects? Entomol. Exp. Appl. 41, 33–38 (1986).
    Article CAS Google Scholar
  7. Felton, G. W., Donato, K., del Vecchio, R. J. & Duffey, S. S. Activation of plant foliar oxidases by feeding reduces nutritive quality of foliage for noctuid herbivores. J. Chem. Ecol. 15, 2667–2694 (1989).
    Article CAS Google Scholar
  8. Orozco-Cardenas, M., McGurl, B. & Ryan, C. A. Expression of an antisense prosystemin gene in tomato plants reduces resistance toward Manduca sexta larvae. Proc. Natl Acad. Sci. USA 90, 8273 8276 (1993).
    Article ADS CAS Google Scholar
  9. Dicke, M., Takabayashi, J., Posthumus, M. A., Schutte, C. & Krips, O. E. Plant-phytoseiid interactions mediated by herbivore-induced plant volatiles: variation in production of cues and in responses of predatory mites. Exp. Appl. Acarol. 22, 311–333 (1998).
    Article CAS Google Scholar
  10. Dicke, M. & Sabelis, M. W. How plants obtain predatory mites as bodyguards. Netherlands J. Zool. 38, 148–165 (1988).
    Article Google Scholar
  11. Turlings, T. C. J., McCall, P. J., Alborn, H. T. & Tumlinson, J. H. An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. J. Chem. Ecol. 19, 411–425 (1993).
    Article CAS Google Scholar
  12. Hopke, J., Donath, J., Blechert, S. & Boland, W. Herbivore-induced volatiles: the emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a β-glucosidase and jasmonic acid. FEBS Lett. 352, 146–150 (1994).
    Article CAS Google Scholar
  13. Drukker, B., Scutareanu, P. & Sabelis, M. W. Do anthocorid predators respond to synomones from Psylla -infested pear trees under field conditions? Entomol. Exp. Appl. 77, 193–203 (1995).
    Article Google Scholar
  14. Shimoda, T., Takabayashi, J., Ashihara, W. & Takafuji, A. Response of predatory insect Scolothrips takahashii toward herbivore-induced plant volatiles under laboratory and field conditions. J. Chem. Ecol. 23, 2033–2048 (1997).
    Article CAS Google Scholar
  15. De Moraes, C. M., Lewis, W. J., Paré, P. W., Alborn, H. T. & Tumlinson, J. H. Herbivore-infested plants selectively attract parasitoids. Nature 393, 570–572 (1998).
    Article ADS CAS Google Scholar
  16. Boland, W., Hopke, J., Donath, J., Nuske, J. & Bublitz, F. Jasmonic acid and coronatin induce odor production in plants. Angew. Chem. Int. Ed. Engl. 34, 1600–1602 (1995).
    Article CAS Google Scholar
  17. Alborn, H. T. et al. . An elicitor of plant volatiles from beet armyworm oral secretion. Science 276, 945–949 (1997).
    Article CAS Google Scholar
  18. Campbell, B. C. & Duffey, S. S. Tomatine and parasitic wasps: Potential incompatibility of plant-antibiosis with biological control. Science 205, 700–702 (1979).
    Article ADS CAS Google Scholar
  19. Strand, L. L. Integrated Pest Management for Tomatoes(Division of Agriculture and Natural Resources Communication Services—Publications, Oakland, 1998).
    Google Scholar
  20. Takabayashi, J. & Dicke, M. Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci. 1, 109–113 (1996).
    Article Google Scholar
  21. Clancy, K. M. & Price, P. W. Rapid herbivore growth enhances enemy attack: sublethal plant defenses remain a paradox. Ecology 68, 733–737 (1987).
    Article Google Scholar
  22. Benrey, B. & Denno, R. F. The slow-growth–high-mortality hypotheses: a test using the cabbage butterfly. Ecology 78, 987–999 (1997).
    Google Scholar
  23. Stout, M. J., Workman, K. V. & Duffey, S. S. Identity, spatial distribution, and variability of induced chemical responses in tomato plants. Entomol. Exp. Appl. 79, 255–271 (1996).
    Article Google Scholar
  24. Bell, E. & Mullet, J. E. Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant. Physiol. 103, 1133–1137 (1993).
    Article CAS Google Scholar
  25. Siedow, J. N. Plant lipoxygenase: structure and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 145–188 (1991).
    Article CAS Google Scholar
  26. Paré, P. W., Alborn, H. T. & Tumlinson, J. H. Concerted biosynthesis of an insect elicitor of plant volatiles. Proc. Natl Acad. Sci. USA 95, 13971–13975 (1998).
    Article ADS Google Scholar
  27. Dicke, M., Sabelis, M. W., Takabayashi, J., Bruin, J. & Posthumus, M. A. Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application to pest control. J. Chem. Ecol. 16, 3091–3118 (1990).
    Article CAS Google Scholar

Download references