Three-dimensional structure of the Stat3β homodimer bound to DNA (original) (raw)

References

  1. Darnell, J. E. J STATs and gene regulation. Science 277, 1630–1635 (1997).
    ADS PubMed CAS Google Scholar
  2. Ihle, J. N. STATs: Signal transducers and activators of transcription. Cell 84, 331–334 (1996).
    PubMed CAS Google Scholar
  3. Pellegrini, S. & Dusanter-Fourt, I. The structure, regulation and function of the Janus kinases (JAKs) and the signal transducers and activators of transcription (STATs). Eur. J. Biochem. 248, 615–633 (1997).
    PubMed CAS Google Scholar
  4. Kumar, A., Commane, M., Flickinger, T. W., Horvath, C. M. & Stark, G. R. Defective TNF-α-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science 278, 1630–1632 (1997).
    ADS PubMed CAS Google Scholar
  5. Pfeffer, L. M. et al. Stat3 as an adaptor to couple phosphatidylinositol 3-kinase to the IFNAR1 chain of the type I interferon receptor. Science 276, 1418–1420 (1997).
    PubMed CAS Google Scholar
  6. Xu, X., Sun, Y.- & Hoey, T. Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science 273, 794–797 (1996).
    ADS PubMed CAS Google Scholar
  7. Vinkemeier, U. et al. DNA binding of in vitro activated Stat1α, Stat1β and truncated Stat1: interaction between NH2-terminal domains stabilizes binding of two dimers to tandem DNA sites. EMBO J. 15, 5616–5626 (1996).
    PubMed PubMed Central CAS Google Scholar
  8. Horvath, C. M., Wen, Z. & Darnell, J. E. J ASTAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain. Genes Dev. 9, 984–994 (1995).
    PubMed CAS Google Scholar
  9. Shuai, K. et al. Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 76, 821–828 (1994).
    PubMed CAS Google Scholar
  10. Wen, Z., Zhong, Z. & Darnell, J. E. J Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82, 241–250 (1995).
    PubMed CAS Google Scholar
  11. Caldenhoven, E. et al. Stat3β, a splice variant of transcription factor Stat3, is a dominant negative regulator of transcription. J. Biol. Chem. 271, 13221–13227 (1996).
    PubMed CAS Google Scholar
  12. Schaeffer, T. S., Sanders, L. K. & Nathans, D. Cooperative transcriptional activity of Jun and Stat3β, a short form of Stat3. Proc. Natl Acad. Sci. USA 92, 9097–9101 (1995).
    ADS Google Scholar
  13. Vinkemeier, U., Moarefi, I., Darnell, J. E. J & Kuriyan, J. Structure of the amino-terminal protein interaction domain of STAT-4. Science 279, 1048–1052 (1998).
    ADS PubMed CAS Google Scholar
  14. Wagner, B. J., Hayes, T. E., Hoban, C. J. & Cochran, B. H. The SIF binding element confers sis/PDGF inducibility onto the c-fos promoter. EMBO J. 9, 4477–4484 (1990).
    PubMed PubMed Central CAS Google Scholar
  15. Fu, X.-Y., Schindler, C., Improta, T., Aebersold, R. & Darnell, J. E. J The proteins of ISGF-3, the interferon α-induced transcriptional activator, define a gene family involved in signal transduction. Proc. Natl Acad. Sci. USA 89, 7840–7843 (1992).
    ADS PubMed CAS Google Scholar
  16. Herzberg, O. & James, M. N. G. Structure of the calcium regulatory muscle protein troponin C at 2.8 Å resolution. Nature 313, 653–659 (1985).
    ADS PubMed CAS Google Scholar
  17. Sundaralingam, M., Bergstrom, R., Strasburg, G. & Rao, S. T. Molecular structure of troponin C from chicken skeletal muscle at 3 angstrom resolution. Science 227, 945–948 (1985).
    ADS PubMed CAS Google Scholar
  18. Eck, M. J., Shoelson, S. E. & Harrison, S. C. Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56_lck_. Nature 362, 87–91 (1993).
    ADS PubMed CAS Google Scholar
  19. Lamb, P. et al. STAT protein complexes activated by interferon-c and gp130 signalling molecules differ in their sequence preferences and transcriptional induction properties. Nucleic Acids Res. 23, 3283–3289 (1995).
    PubMed PubMed Central CAS Google Scholar
  20. Mikita, T., Campbell, D., Wu, P., Williamson, K. & Schindler, U. Requirements for interleukin-4-induced gene expression and functional characterization of Stat6. Mol. Cell. Biol. 16, 5811–5821 (1996).
    PubMed PubMed Central CAS Google Scholar
  21. Seidel, H. M. et al. Spacing of palindromic half sites as a determinant of selective STAT (signal transducers and activators of transcription) DNA and transcriptional activity. Proc. Natl Acad. Sci. USA 92, 3041–3045 (1995).
    ADS PubMed CAS Google Scholar
  22. Müller, C. W., Rey, F. A. & Harrison, S. C. Comparison of two different DNA-binding modes of the NF-κB p50 homodimer. Nature Struct. Biol. 3, 224–227 (1996).
    PubMed Google Scholar
  23. Kuriyan, J. & Cowburn, D. Modular peptide recognition domains in eukaryotic signaling. Annu. Rev. Biophys. Biomol. Struct. 26, 259–288 (1997).
    PubMed CAS Google Scholar
  24. Heim, M. H., Kerr, I. M., Stark, G. R. & Darnell, J. E. J Contribution of Stat SH2 groups to specific interferon signaling by the Jak–Stat pathway. Science 267, 1347–1349 (1995).
    ADS PubMed CAS Google Scholar
  25. Stancato, L. F., David, M., Carter-Su, C. & Larner, A. C. Preassociation of Stat1 with Stat2 and Stat3 in separate signalling complexes prior to cytokine stimulation. J. Biol. Chem. 271, 4134–4137 (1996).
    PubMed CAS Google Scholar
  26. Stahl, N. et al. Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 267, 1349–1353 (1995).
    ADS PubMed CAS Google Scholar
  27. Gerhartz, C. et al. Differential activation of acute phase response factor/Stat3 and Stat1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. J. Biol. Chem. 271, 12991–12998 (1996).
    PubMed CAS Google Scholar
  28. Horvath, C. M., Stark, G. R., Kerr, I. M. & Darnell, J. E. J Interactions between STAT and non-STAT proteins in the interferon-stimulated gene factor 3 transcription complex. Mol. Cell. Biol. 16, 6957–6964 (1996).
    PubMed PubMed Central CAS Google Scholar
  29. Müller, C. W., Rey, F. A., Sodeoka, M., Verdine, G. L. & Harrison, S. C. Structure of the NF-κB p50 homodimer bound to DNA. Nature 373, 311–317 (1995).
    ADS PubMed Google Scholar
  30. Ghosh, G., Van Duyne, G., Ghosh, S. & Sigler, P. B. The structure of NF-κB p50 homodimer bound to a κB site. Nature 373, 303–310 (1995).
    ADS PubMed CAS Google Scholar
  31. Cramer, P., Larson, C. J., Verdine, G. L. & Müller, C. W. Structure of the human NF-κB p52 homodimer–DNA complex at 2.1 Å resolution. EMBO J. 16, 7078–7090 (1997).
    PubMed PubMed Central CAS Google Scholar
  32. Chen, Y.-Q., Ghosh, S. & Ghosh, G. Anovel DNA recognition mode by the NF-κB p65 homodimer. Nature Struct. Biol. 5, 67–73 (1998).
    PubMed Google Scholar
  33. Chen, F. E., Huang, D.-B., Chen, Y.-Q. & Ghosh, G. Crystal structure of p50/p65 heterodimer of transcription factor NF-κB bound to DNA. Nature 391, 410–413 (1998).
    ADS PubMed CAS Google Scholar
  34. Müller, C. W. & Herrmann, B. Crystallographic structure of the T domain–DNA complex of the Brachyury transcription factor. Nature 389, 880–884 (1997).
    ADS Google Scholar
  35. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzymol. 276, 307–326 (1997).
    PubMed CAS Google Scholar
  36. Collaborative Computational Project Number 4. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D 50, 760–776 (1994).
  37. Fortelle, E. d. L. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for the multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Meth. Enzymol. 276, 472–494 (1997).
    Google Scholar
  38. Richardson, J. S. & Richardson, D. C. Interpretation of electron density. Meth. Enzymol. 115, 189–206 (1985).
    PubMed CAS Google Scholar
  39. Jones, T. A., Zhou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
    PubMed Google Scholar
  40. Brünger, A. T. X-PLOR version 3.1. A system for X-ray crystallography and NMR (Yale University Press, New Haven, CT, (1992)).
    Google Scholar
  41. Brünger, A. T. Free R value: A novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).
    ADS PubMed Google Scholar
  42. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).
    CAS Google Scholar
  43. Higgins, D. G., Thompson, J. D. & Gibson, T. J. Using CLUSTAL for multiple sequence alignments. Meth. Enzymol. 266, 383–402 (1996).
    PubMed CAS Google Scholar
  44. Chen, L., Glover, J. N. M., Hogan, P. G., Rao, A. & Harrison, S. C. Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 392, 42–48 (1998).
    ADS PubMed CAS Google Scholar
  45. Carson, M. Ribbons 2.0. J. Appl. Crystallogr. 24, 958–961 (1991).
    Google Scholar
  46. Nichols, A., Bharadwaj, R. & Honig, B. GRASP—graphical representation and analysis of surface properties. Biophysics J. 64, A166–A166 (1993).
    Google Scholar

Download references