ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis (original) (raw)
References
Ashcroft, F. M. Adenosine 5′-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci.11, 97–118 (1988). ArticleCAS Google Scholar
Bernardi, H. et al. ATP-modulated K+ channels sensitive to antidiabetic sulfonylureas are present in adenohypophysis and are involved in growth hormone release. Proc. Natl. Acad. Sci. USA90, 1340–1344 (1993). ArticleCAS Google Scholar
Ashford, M. L., Sturgess, N. C., Trout, N. J., Gardner, N. J. & Hales, C. N. Adenosine-5′-triphosphate-sensitive ion channels in neonatal rat cultured central neurones. Pflugers Arch.412, 297–304 (1988). ArticleCAS Google Scholar
Spruce, A. E., Standen, N. B. & Stanfield, P. R. Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature316, 736–738 (1985). ArticleCAS Google Scholar
Amoroso, S., Schmid-Antomarchi, H., Fosset, M. & Lazdunski, M. Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels. Science247, 852–854 (1990). ArticleCAS Google Scholar
Terzic, A., Jahangir, A. & Kurachi, Y. Cardiac ATP-sensitive K+ channels: regulation by intracellular nucleotides and K+ channel-opening drugs. Am. J. Physiol.269, C525–545 (1995). ArticleCAS Google Scholar
Cook, D. L. & Hales, C. N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature311, 271–273 (1984). ArticleCAS Google Scholar
Roper, J. & Ashcroft, F. M. Metabolic inhibition and low internal ATP activate K-ATP channels in rat dopaminergic substantia nigra neurones. Pflugers Arch.430, 44–54 (1995). ArticleCAS Google Scholar
Ohno-Shosaku, T. & Yamamoto, C. Identification of an ATP-sensitive K+ channel in rat cultured cortical neurons. Pflugers Arch.422, 260–266 (1992). ArticleCAS Google Scholar
Zawar, C., Plant, T. D., Schirra, C., Konnerth, A. & Neumcke, B. Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J. Physiol. (Lond.)514, 327–341 (1999). ArticleCAS Google Scholar
Ashford, M. L., Boden, P. R. & Treherne, J. M. Glucose-induced excitation of hypothalamic neurones is mediated by ATP-sensitive K+ channels. Pflugers Arch.415, 479–483 (1990). ArticleCAS Google Scholar
Oomura, Y., Ono, T., Ooyama, H. & Wayner, M. J. Glucose and osmosensitive neurones of the rat hypothalamus. Nature222, 282–284 (1969). ArticleCAS Google Scholar
Minami, T., Oomura, Y. & Sugimori, M. Electrophysiological properties and glucose responsiveness of guinea-pig ventromedial hypothalamic neurones in vitro. J. Physiol. (Lond.)380, 127–143 (1986). ArticleCAS Google Scholar
Ashford, M. L., Boden, P. R. & Treherne, J. M. Tolbutamide excites rat glucoreceptive ventromedial hypothalamic neurones by indirect inhibition of ATP-K+ channels. Br. J. Pharmacol.101, 531–540 (1990). ArticleCAS Google Scholar
Ashcroft, F. M. & Gribble, F. M. Correlating structure and function in ATP-sensitive K+ channels. Trends Neurosci.21, 288–294 (1998). ArticleCAS Google Scholar
Aguilar-Bryan, L. & Bryan, J. Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr. Rev.20, 101–135 (1999). CASPubMed Google Scholar
Seino, S. ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu. Rev. Physiol.61, 337–362 (1999). ArticleCAS Google Scholar
Chutkow, W. A., Makielski, J. C., Nelson, D. J., Burant, C. F. & Fan, Z. Alternative splicing of sur2 exon 17 regulates nucleotide sensitivity of the ATP-sensitive potassium channel. J. Biol. Chem.274, 13656–13665 (1999). ArticleCAS Google Scholar
Karschin, A., Brockhaus, J. & Ballanyi, K. KATP channel formation by the sulphonylurea receptors SUR1 with Kir6.2 subunits in rat dorsal vagal neurons in situ. J. Physiol. (Lond.)509, 339–346 (1998). ArticleCAS Google Scholar
Liss, B., Bruns, R. & Roeper, J. Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. EMBO J.18, 833–846 (1999). ArticleCAS Google Scholar
Lee, K., Dixon, A. K., Richardson, P. J. & Pinnock, R. D. Glucose-receptive neurones in the rat ventromedial hypothalamus express KATP channels composed of Kir6.1 and SUR1 subunits. J. Physiol. (Lond.)515, 439–452 (1999). ArticleCAS Google Scholar
Miki, T. et al. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc. Natl. Acad. Sci. USA95, 10402–10406 (1998). ArticleCAS Google Scholar
Borg, W. P. et al. Ventromedial hypothalamic lesions in rats suppress counterregulatory responses to hypoglycemia. J. Clin. Invest.93, 1677–1682 (1994). ArticleCAS Google Scholar
Borg, W. P., Sherwin, R. S., During, M. J., Borg, M. A. & Shulman, G. I. Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes44, 180–184 (1995). ArticleCAS Google Scholar
Borg, M. A., Sherwin, R. S., Borg, W. P., Tamborlane, W. V. & Shulman, G. I. Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. J. Clin. Invest.99, 361–365 (1997). ArticleCAS Google Scholar
Inagaki, N., et al. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science270, 1166–1170 (1995). ArticleCAS Google Scholar
Sakura, H., Ammala, C., Smith, P. A. Gribble, F. M., Ashcroft, F. M. Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle. FEBS Lett.377, 338–344 (1995). ArticleCAS Google Scholar
Bokvist, K. et al. Characterisation of sulphonylurea and ATP-regulated K+ channels in rat pancreatic A-cells. Pflugers Arch.438, 428–436 (1999). CASPubMed Google Scholar
Suzuki, M., Fujikura, K., Inagaki, N., Seino, S. & Takata, K. Localization of the ATP-sensitive K+ channel subunit Kir6.2 in mouse pancreas. Diabetes46, 1440–1444 (1997). ArticleCAS Google Scholar
Taborsky, G. J. Jr., Ahren, B. & Havel, P. J. Autonomic mediation of glucagon secretion during hypoglycemia: implications for impaired alpha-cell responses in type 1 diabetes. Diabetes47, 995–1005 (1998). ArticleCAS Google Scholar
Muller, E. E., Cocchi, D. & Forni, A. A central site for the hyperglycemic action of 2-deoxy-d-glucose in mouse and rat. Life Sci.10, 1057–1067 (1971). ArticleCAS Google Scholar
Borg, M. A. et al. Chronic hypoglycemia and diabetes impair counterregulation induced by localized 2-deoxy-glucose perfusion of the ventromedial hypothalamus in rats. Diabetes48, 584–587 (1999). ArticleCAS Google Scholar
Silver, I. A. & Erecinska, M. Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons. J. Neurophysiol.79, 1733–1745 (1998). ArticleCAS Google Scholar
Yang, X. J., Kow, L. M., Funabashi, T. & Mobbs, C. V. Hypothalamic glucose sensor: similarities to and differences from pancreatic beta-cell mechanisms. Diabetes48, 1763–1772 (1999). ArticleCAS Google Scholar
Gribble, F. M., Tucker, S. J., Seino, S. & Ashcroft, F. M. Tissue specificity of sulfonylureas: studies on cloned cardiac and beta-cell K(ATP) channels. Diabetes47, 1412–1418 (1998). ArticleCAS Google Scholar
Bergen, H. T., Monkman, N. & Mobbs, C. V. Injection with gold thioglucose impairs sensitivity to glucose: evidence that glucose-responsive neurons are important for long-term regulation of body weight. Brain Res.734, 332–336 (1996). ArticleCAS Google Scholar
Lambolez, B., Audinat, E., Bochet, P., Crepel, F. & Rossier, J. AMPA receptor subunits expressed by single Purkinje cells. Neuron9, 247–258 (1992). ArticleCAS Google Scholar
Elmquist, J. K., Elias, C. F. & Saper, C. B. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron22, 221–232 (1999). ArticleCAS Google Scholar
Spanswick, D., Smith, M. A., Groppi, V. E., Logan, S. D. & Ashford, M. L. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature390, 521–525 (1997). ArticleCAS Google Scholar
Stephens, T. W. et al. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature377, 530–532 (1995). ArticleCAS Google Scholar
Steffens, A. B., Strubbe, J. H., Balkan, B. & Scheurink, J. W. Neuroendocrine mechanisms involved in regulation of body weight, food intake and metabolism. Neurosci. Biobehav. Rev.14, 305–313 (1990). ArticleCAS Google Scholar
Levin, B. E., Dunn-Meynell, A. A. & Routh, V. H. Brain glucose sensing and body energy homeostasis: role in obesity and diabetes. Am. J. Physiol.276, R1223–1231 (1999). CASPubMed Google Scholar
Lynch, R. M., Tompkins, L., Brooks, H. L., Dunn-Meynell, A. A. & Levin, B. E. Localization of glucokinase gene expression in the rat brain. Diabetes49, 693–700 (2000). ArticleCAS Google Scholar
Karschin, C., Ecke, C., Ashcroft, F. M. & Karschin, A. Overlapping distribution of K(ATP) channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett.401, 59–64 (1997). ArticleCAS Google Scholar
Dunn-Meynell, A. A., Rawson, N. E. & Levin, B. E. Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res.814, 41–54 (1998). ArticleCAS Google Scholar
Pessin, J. E. & Bell, G. I. Mammalian facilitative glucose transporter family: structure and molecular regulation. Annu. Rev. Physiol.54, 911–930 (1992). ArticleCAS Google Scholar
Matschinsky, F. M., Glaser, B., Magnuson, M. A. Pancreatic beta-cell glucokinase: closing the gap between theoretical concepts and experimental realities. Diabetes47, 307–315 (1998). ArticleCAS Google Scholar
Leloup, C. et al. Glucose transporter 2 (GLUT 2): expression in specific brain nuclei. Brain Res.638, 221–226 (1994). ArticleCAS Google Scholar
Schwartz, M. W., Woods, S. C., Porte, D. Jr., Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature404, 661–671 (2000). ArticleCAS Google Scholar
Salehi, A., Chen, D., H. Kanson, R., Nordin, G. & Lundquist, I. Gastrectomy induces impaired insulin and glucagon secretion: evidence for a gastro-insular axis in mice. J. Physiol. (Lond.)514, 579–591 (1999). ArticleCAS Google Scholar