ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis (original) (raw)

References

  1. Ashcroft, F. M. Adenosine 5′-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci. 11, 97–118 (1988).
    Article CAS Google Scholar
  2. Bernardi, H. et al. ATP-modulated K+ channels sensitive to antidiabetic sulfonylureas are present in adenohypophysis and are involved in growth hormone release. Proc. Natl. Acad. Sci. USA 90, 1340–1344 (1993).
    Article CAS Google Scholar
  3. Ashford, M. L., Sturgess, N. C., Trout, N. J., Gardner, N. J. & Hales, C. N. Adenosine-5′-triphosphate-sensitive ion channels in neonatal rat cultured central neurones. Pflugers Arch. 412, 297–304 (1988).
    Article CAS Google Scholar
  4. Spruce, A. E., Standen, N. B. & Stanfield, P. R. Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature 316, 736–738 (1985).
    Article CAS Google Scholar
  5. Amoroso, S., Schmid-Antomarchi, H., Fosset, M. & Lazdunski, M. Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels. Science 247, 852–854 (1990).
    Article CAS Google Scholar
  6. Terzic, A., Jahangir, A. & Kurachi, Y. Cardiac ATP-sensitive K+ channels: regulation by intracellular nucleotides and K+ channel-opening drugs. Am. J. Physiol. 269, C525–545 (1995).
    Article CAS Google Scholar
  7. Cook, D. L. & Hales, C. N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311, 271–273 (1984).
    Article CAS Google Scholar
  8. Roper, J. & Ashcroft, F. M. Metabolic inhibition and low internal ATP activate K-ATP channels in rat dopaminergic substantia nigra neurones. Pflugers Arch. 430, 44–54 (1995).
    Article CAS Google Scholar
  9. Ohno-Shosaku, T. & Yamamoto, C. Identification of an ATP-sensitive K+ channel in rat cultured cortical neurons. Pflugers Arch. 422, 260–266 (1992).
    Article CAS Google Scholar
  10. Zawar, C., Plant, T. D., Schirra, C., Konnerth, A. & Neumcke, B. Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J. Physiol. (Lond.) 514, 327–341 (1999).
    Article CAS Google Scholar
  11. Ashford, M. L., Boden, P. R. & Treherne, J. M. Glucose-induced excitation of hypothalamic neurones is mediated by ATP-sensitive K+ channels. Pflugers Arch. 415, 479–483 (1990).
    Article CAS Google Scholar
  12. Oomura, Y., Ono, T., Ooyama, H. & Wayner, M. J. Glucose and osmosensitive neurones of the rat hypothalamus. Nature 222, 282–284 (1969).
    Article CAS Google Scholar
  13. Minami, T., Oomura, Y. & Sugimori, M. Electrophysiological properties and glucose responsiveness of guinea-pig ventromedial hypothalamic neurones in vitro. J. Physiol. (Lond.) 380, 127–143 (1986).
    Article CAS Google Scholar
  14. Ashford, M. L., Boden, P. R. & Treherne, J. M. Tolbutamide excites rat glucoreceptive ventromedial hypothalamic neurones by indirect inhibition of ATP-K+ channels. Br. J. Pharmacol. 101, 531–540 (1990).
    Article CAS Google Scholar
  15. Ashcroft, F. M. & Gribble, F. M. Correlating structure and function in ATP-sensitive K+ channels. Trends Neurosci. 21, 288–294 (1998).
    Article CAS Google Scholar
  16. Aguilar-Bryan, L. & Bryan, J. Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr. Rev. 20, 101–135 (1999).
    CAS PubMed Google Scholar
  17. Seino, S. ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu. Rev. Physiol. 61, 337–362 (1999).
    Article CAS Google Scholar
  18. Chutkow, W. A., Makielski, J. C., Nelson, D. J., Burant, C. F. & Fan, Z. Alternative splicing of sur2 exon 17 regulates nucleotide sensitivity of the ATP-sensitive potassium channel. J. Biol. Chem. 274, 13656–13665 (1999).
    Article CAS Google Scholar
  19. Karschin, A., Brockhaus, J. & Ballanyi, K. KATP channel formation by the sulphonylurea receptors SUR1 with Kir6.2 subunits in rat dorsal vagal neurons in situ. J. Physiol. (Lond.) 509, 339–346 (1998).
    Article CAS Google Scholar
  20. Liss, B., Bruns, R. & Roeper, J. Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. EMBO J. 18, 833–846 (1999).
    Article CAS Google Scholar
  21. Lee, K., Dixon, A. K., Richardson, P. J. & Pinnock, R. D. Glucose-receptive neurones in the rat ventromedial hypothalamus express KATP channels composed of Kir6.1 and SUR1 subunits. J. Physiol. (Lond.) 515, 439–452 (1999).
    Article CAS Google Scholar
  22. Miki, T. et al. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc. Natl. Acad. Sci. USA 95, 10402–10406 (1998).
    Article CAS Google Scholar
  23. Borg, W. P. et al. Ventromedial hypothalamic lesions in rats suppress counterregulatory responses to hypoglycemia. J. Clin. Invest. 93, 1677–1682 (1994).
    Article CAS Google Scholar
  24. Borg, W. P., Sherwin, R. S., During, M. J., Borg, M. A. & Shulman, G. I. Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes 44, 180–184 (1995).
    Article CAS Google Scholar
  25. Borg, M. A., Sherwin, R. S., Borg, W. P., Tamborlane, W. V. & Shulman, G. I. Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. J. Clin. Invest. 99, 361–365 (1997).
    Article CAS Google Scholar
  26. Inagaki, N., et al. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270, 1166–1170 (1995).
    Article CAS Google Scholar
  27. Sakura, H., Ammala, C., Smith, P. A. Gribble, F. M., Ashcroft, F. M. Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle. FEBS Lett. 377, 338–344 (1995).
    Article CAS Google Scholar
  28. Bokvist, K. et al. Characterisation of sulphonylurea and ATP-regulated K+ channels in rat pancreatic A-cells. Pflugers Arch. 438, 428–436 (1999).
    CAS PubMed Google Scholar
  29. Suzuki, M., Fujikura, K., Inagaki, N., Seino, S. & Takata, K. Localization of the ATP-sensitive K+ channel subunit Kir6.2 in mouse pancreas. Diabetes 46, 1440–1444 (1997).
    Article CAS Google Scholar
  30. Taborsky, G. J. Jr., Ahren, B. & Havel, P. J. Autonomic mediation of glucagon secretion during hypoglycemia: implications for impaired alpha-cell responses in type 1 diabetes. Diabetes 47, 995–1005 (1998).
    Article CAS Google Scholar
  31. Muller, E. E., Cocchi, D. & Forni, A. A central site for the hyperglycemic action of 2-deoxy-d-glucose in mouse and rat. Life Sci. 10, 1057–1067 (1971).
    Article CAS Google Scholar
  32. Borg, M. A. et al. Chronic hypoglycemia and diabetes impair counterregulation induced by localized 2-deoxy-glucose perfusion of the ventromedial hypothalamus in rats. Diabetes 48, 584–587 (1999).
    Article CAS Google Scholar
  33. Silver, I. A. & Erecinska, M. Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons. J. Neurophysiol. 79, 1733–1745 (1998).
    Article CAS Google Scholar
  34. Yang, X. J., Kow, L. M., Funabashi, T. & Mobbs, C. V. Hypothalamic glucose sensor: similarities to and differences from pancreatic beta-cell mechanisms. Diabetes 48, 1763–1772 (1999).
    Article CAS Google Scholar
  35. Gribble, F. M., Tucker, S. J., Seino, S. & Ashcroft, F. M. Tissue specificity of sulfonylureas: studies on cloned cardiac and beta-cell K(ATP) channels. Diabetes 47, 1412–1418 (1998).
    Article CAS Google Scholar
  36. Bergen, H. T., Monkman, N. & Mobbs, C. V. Injection with gold thioglucose impairs sensitivity to glucose: evidence that glucose-responsive neurons are important for long-term regulation of body weight. Brain Res. 734, 332–336 (1996).
    Article CAS Google Scholar
  37. Lambolez, B., Audinat, E., Bochet, P., Crepel, F. & Rossier, J. AMPA receptor subunits expressed by single Purkinje cells. Neuron 9, 247–258 (1992).
    Article CAS Google Scholar
  38. Elmquist, J. K., Elias, C. F. & Saper, C. B. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22, 221–232 (1999).
    Article CAS Google Scholar
  39. Spanswick, D., Smith, M. A., Groppi, V. E., Logan, S. D. & Ashford, M. L. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 390, 521–525 (1997).
    Article CAS Google Scholar
  40. Stephens, T. W. et al. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 377, 530–532 (1995).
    Article CAS Google Scholar
  41. Steffens, A. B., Strubbe, J. H., Balkan, B. & Scheurink, J. W. Neuroendocrine mechanisms involved in regulation of body weight, food intake and metabolism. Neurosci. Biobehav. Rev. 14, 305–313 (1990).
    Article CAS Google Scholar
  42. Levin, B. E., Dunn-Meynell, A. A. & Routh, V. H. Brain glucose sensing and body energy homeostasis: role in obesity and diabetes. Am. J. Physiol. 276, R1223–1231 (1999).
    CAS PubMed Google Scholar
  43. Lynch, R. M., Tompkins, L., Brooks, H. L., Dunn-Meynell, A. A. & Levin, B. E. Localization of glucokinase gene expression in the rat brain. Diabetes 49, 693–700 (2000).
    Article CAS Google Scholar
  44. Karschin, C., Ecke, C., Ashcroft, F. M. & Karschin, A. Overlapping distribution of K(ATP) channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett. 401, 59–64 (1997).
    Article CAS Google Scholar
  45. Dunn-Meynell, A. A., Rawson, N. E. & Levin, B. E. Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res. 814, 41–54 (1998).
    Article CAS Google Scholar
  46. Pessin, J. E. & Bell, G. I. Mammalian facilitative glucose transporter family: structure and molecular regulation. Annu. Rev. Physiol. 54, 911–930 (1992).
    Article CAS Google Scholar
  47. Matschinsky, F. M., Glaser, B., Magnuson, M. A. Pancreatic beta-cell glucokinase: closing the gap between theoretical concepts and experimental realities. Diabetes 47, 307–315 (1998).
    Article CAS Google Scholar
  48. Leloup, C. et al. Glucose transporter 2 (GLUT 2): expression in specific brain nuclei. Brain Res. 638, 221–226 (1994).
    Article CAS Google Scholar
  49. Schwartz, M. W., Woods, S. C., Porte, D. Jr., Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000).
    Article CAS Google Scholar
  50. Salehi, A., Chen, D., H. Kanson, R., Nordin, G. & Lundquist, I. Gastrectomy induces impaired insulin and glucagon secretion: evidence for a gastro-insular axis in mice. J. Physiol. (Lond.) 514, 579–591 (1999).
    Article CAS Google Scholar

Download references