ter Kuile, F., White, N. J., Holloway, P. H., Pasvol, G. & Krishna, S. Plasmodium falciparum: In vitro studies of the pharmacodynamic properties of drugs used for the treatment of severe malaria. Exp. Parasitol.76, 85–95 (1993) ArticleCAS Google Scholar
Jefford, C. W. Why artemisinin and certain synthetic peroxides are potent antimalarials. Implications for the mode of action. Curr. Med. Chem.8, 1803–1826 (2001) ArticleCAS Google Scholar
Robert, A., Dechy-Cabaret, O., Cazelles, J. & Meunier, B. From mechanistic studies on artemisinin derivatives to new modular antimalarial drugs. Acc. Chem. Res.35, 167–174 (2002) ArticleCAS Google Scholar
Olliaro, P. L., Haynes, R. K., Meunier, B. & Yuthavong, Y. Possible modes of action of the artemisinin-type compounds. Trends Parasitol.17, 122–126 (2001) ArticleCAS Google Scholar
Meshnick, S. R. Artemisinin: mechanisms of action, resistance and toxicity. Int. J. Parasitol.32, 1655–1660 (2002) ArticleCAS Google Scholar
Pandey, A. V., Tekwani, B. L., Singh, R. L. & Chauhan, V. S. Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. J. Biol. Chem.274, 19383–19388 (1999) ArticleCAS Google Scholar
Haynes, R. K. et al. Artemisinin antimalarials do not inhibit hemozoin formation. Antimicrob. Agents Chemother.47, 1175 (2003) ArticleCAS Google Scholar
O'Neill, P. et al. Biomimetic Fe(II)-mediated degradation of arteflene (Ro-42–1611). The first EPR spin-trapping evidence for the previously postulated secondary carbon-centered cyclohexyl radical. J. Org. Chem.65, 1578–1582 (2000) ArticleCAS Google Scholar
Hawley, S. R. et al. Relationship between antimalarial drug activity, accumulation, and inhibition of heme polymerization in Plasmodium falciparum in vitro. Antimicrob. Agents Chemother.42, 682–686 (1998) ArticleCAS Google Scholar
Ellis, D. S. et al. The chemotherapy of rodent malaria, XXXIX. Ultrastructural changes following treatment with artemisinine of Plasmodium berghei infection in mice, with observations of the localization of [3H]-dihydroartemisinine in P. falciparum in vitro. Ann. Trop. Med. Parasitol.79, 367–374 (1985) ArticleCAS Google Scholar
Krishna, S. et al. Expression and functional characterization of a Plasmodium falciparum Ca2+-ATPase (PfATP4) belonging to a subclass unique to apicomplexan organisms. J. Biol. Chem.276, 10782–10787 (2001) ArticleCAS Google Scholar
Toyoshima, C. & Nomura, H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature418, 605–611 (2002) ArticleADSCAS Google Scholar
Price, R. et al. The pfmdr1 gene is associated with a multidrug-resistant phenotype in Plasmodium falciparum from the western border of Thailand. Antimicrob. Agents Chemother.43, 2943–2949 (1999) ArticleCAS Google Scholar
Gu, H. M., Warhurst, D. C. & Peters, W. Uptake of [3H] dihydroartemisinine by erythrocytes infected with Plasmodium falciparum in vitro. Trans. R. Soc. Trop. Med. Hyg.78, 265–270 (1984) ArticleCAS Google Scholar
Haynes, R. K. Artemisinin and derivatives: the future for malaria treatment? Curr. Opin. Infect. Dis.14, 719–726 (2001) ArticleCAS Google Scholar
Meshnick, S. R. et al. Iron-dependent free radical generation from the antimalarial agent artemisinin (qinghaosu). Antimicrob. Agents Chemother.37, 1108–1114 (1993) ArticleCAS Google Scholar
Bray, P. G., Mungthin, M., Ridley, R. G. & Ward, S. A. Access to hematin: the basis of chloroquine resistance. Mol. Pharmacol.54, 170–179 (1998) ArticleCAS Google Scholar
Simpson, P. B. & Russell, J. T. Role of sarcoplasmic/endoplasmic-reticulum Ca2+-ATPases in mediating Ca2+ waves and local Ca2+-release microdomains in cultured glia. Biochem. J.325, 239–247 (1997) ArticleCAS Google Scholar
Akompong, T., VanWye, J., Ghori, N. & Haldar, K. Artemisinin and its derivatives are transported by a vacuolar-network of Plasmodium falciparum and their anti-malarial activities are additive with toxic sphingolipid analogues that block the network. Mol. Biochem. Parasitol.101, 71–79 (1999) ArticleCAS Google Scholar
Asawamahasakda, W., Ittarat, I., Pu, Y. M., Ziffer, H. & Meshnick, S. R. Reaction of antimalarial endoperoxides with specific parasite proteins. Antimicrob. Agents Chemother.38, 1854–1858 (1994) ArticleCAS Google Scholar
Bhisutthibhan, J. et al. The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin. J. Biol. Chem.273, 16192–16198 (1998) ArticleCAS Google Scholar
Ono, T. et al. Degenerative changes in morphology of Plasmodium falciparum induced by artemether in vitro. Jpn J. Parasitol.40, 587–595 (1991) Google Scholar
Allen, D. G., Eisner, D. A. & Wray, S. C. Birthday present for digitalis. Nature316, 674–675 (1985) ArticleADSCAS Google Scholar
Schatzmann, H.-J. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv. Physiol. Acta11, 346–354 (1953) CAS Google Scholar
Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature405, 647–655 (2000) ArticleADSCAS Google Scholar
Woodrow, C. J., Penny, J. I. & Krishna, S. Intraerythrocytic Plasmodium falciparum expresses a high-affinity facilitative hexose transporter. J. Biol. Chem.274, 7272–7277 (1999) ArticleCAS Google Scholar
East, J. M. Purification of a membrane protein (Ca2+/Mg2+-ATPase) and its reconstitution into lipid vesicles. Methods Mol. Biol.27, 87–94 (1994) CASPubMed Google Scholar
Bers, D. M., Patton, C. W. & Nuccitelli, R. A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol.40, 3–29 (1994) ArticleCAS Google Scholar
Berenbaum, M. C. A method for testing for synergy with any number of agents. J. Infect. Dis.137, 122–130 (1978) ArticleCAS Google Scholar