Determining the architectures of macromolecular assemblies (original) (raw)
Sali, A., Glaeser, R., Earnest, T. & Baumeister, W. From words to literature in structural proteomics. Nature422, 216–225 (2003) ArticleADSCASPubMed Google Scholar
Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol.148, 635–651 (2000) ArticleCASPubMedPubMed Central Google Scholar
Weis, K. Nucleocytoplasmic transport: cargo trafficking across the border. Curr. Opin. Cell Biol.14, 328–335 (2002) ArticleCASPubMed Google Scholar
Yang, Q., Rout, M. P. & Akey, C. W. Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. Mol. Cell1, 223–234 (1998) ArticleCASPubMed Google Scholar
Beck, M., Lucic, V., Förster, F., Baumeister, E. & Medalia, O. Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature449, 611–615 (2007) ArticleADSCASPubMed Google Scholar
Havel, T. F. & Wüthrich, K. A distance geometry program for determining the structures of small proteins and other macromolecules from nuclear magnetic resonance measurements of intramolecular 1H–1H proximities in solution. Bull. Math. Biol.46, 673–698 (1984) CASMATH Google Scholar
Malhotra, A., Tan, R. K. & Harvey, S. C. Prediction of the three-dimensional structure of Escherichia coli 30S ribosomal subunit: a molecular mechanics approach. Proc. Natl Acad. Sci. USA87, 1950–1954 (1990) ArticleADSCASPubMedPubMed Central Google Scholar
Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA100, 2450–2455 (2003) ArticleADSCASPubMedPubMed Central Google Scholar
Lim, R. Y. et al. Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc. Natl Acad. Sci. USA103, 9512–9517 (2006) ArticleADSCASPubMedPubMed Central Google Scholar
Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol.2, e380 (2004) ArticlePubMedPubMed CentralCAS Google Scholar
Lutzmann, M., Kunze, R., Buerer, A., Aebi, U. & Hurt, E. Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J.21, 387–397 (2002) ArticleCASPubMedPubMed Central Google Scholar
Strambio-de-Castillia, C., Blobel, G. & Rout, M. P. Isolation and characterization of nuclear envelopes from the Yeast Saccharomyces . J. Cell Biol.131, 19–31 (1995) ArticleCASPubMed Google Scholar
Miller, A. L. et al. Cytoplasmic inositol hexakisphosphate production is sufficient for mediating the Gle1-mRNA export pathway. J. Biol. Chem.279, 51022–51032 (2004) ArticleCASPubMed Google Scholar
Solsbacher, J., Maurer, P., Vogel, F. & Schlenstedt, G. Nup2p, a yeast nucleoporin, functions in bidirectional transport of importin alpha. Mol. Cell. Biol.20, 8468–8479 (2000) ArticleCASPubMedPubMed Central Google Scholar
Marelli, M., Aitchison, J. D. & Wozniak, R. W. Specific binding of the karyopherin Kap121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p. J. Cell Biol.143, 1813–1830 (1998) ArticleCASPubMedPubMed Central Google Scholar
Archambault, V. et al. Genetic and biochemical evaluation of the importance of Cdc6 in regulating mitotic exit. Mol. Biol. Cell14, 4592–4604 (2003) ArticleCASPubMedPubMed Central Google Scholar
Archambault, V. et al. Targeted proteomic study of the cyclin-Cdk module. Mol. Cell14, 699–711 (2004) ArticleCASPubMed Google Scholar
Tackett, A. J. et al. I-DIRT, a general method for distinguishing between specific and nonspecific protein interactions. J. Proteome Res.4, 1752–1756 (2005) ArticleCASPubMed Google Scholar
Cristea, I. M., Williams, R., Chait, B. T. & Rout, M. P. Fluorescent proteins as proteomic probes. Mol. Cell. Proteomics4, 1933–1941 (2005) ArticleCASPubMed Google Scholar
Niepel, M., Strambio-de-Castillia, C., Fasolo, J., Chait, B. T. & Rout, M. P. The nuclear pore complex-associated protein, Mlp2p, binds to the yeast spindle pole body and promotes its efficient assembly. J. Cell Biol.170, 225–235 (2005) ArticleCASPubMedPubMed Central Google Scholar
Cristea, I. M. et al. Tracking and elucidating alphavirus-host protein interactions. J. Biol. Chem.281, 30269–30278 (2006) ArticleCASPubMed Google Scholar
Zhang, W. & Chait, B. T. ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal. Chem.72, 2482–2489 (2000) ArticleCASPubMed Google Scholar
Krutchinsky, A. N., Kalkum, M. & Chait, B. T. Automatic identification of proteins with a MALDI-quadrupole ion trap mass spectrometer. Anal. Chem.73, 5066–5077 (2001) ArticleCASPubMed Google Scholar
Stelter, P. et al. Molecular basis for the functional interaction of dynein light chain with the nuclear-pore complex. Nature Cell Biol.9, 788–796 (2007) ArticleCASPubMed Google Scholar
Murphy, R., Watkins, J. L. & Wente, S. R. GLE2, a Saccharomyces cerevisiae homologue of the Schizosaccharomyces pombe export factor RAE1, is required for nuclear pore complex structure and function. Mol. Biol. Cell7, 1921–1937 (1996) ArticleCASPubMedPubMed Central Google Scholar
Murphy, R. & Wente, S. R. An RNA-export mediator with an essential nuclear export signal. Nature383, 357–360 (1996) ArticleADSCASPubMed Google Scholar
Lutzmann, M. et al. Reconstitution of Nup157 and Nup145N into the Nup84 complex. J. Biol. Chem.280, 18442–18451 (2005) ArticleCASPubMed Google Scholar
Bailer, S. M. et al. Nup116p associates with the Nup82p-Nsp1p-Nup159p nucleoporin complex. J. Biol. Chem.275, 2354–23548 (2000) Article Google Scholar
Grandi, P., Doye, V. & Hurt, E. C. Purification of NSP1 reveals complex formation with ‘GLFG’ nucleoporins and a novel nuclear pore protein NIC96. EMBO. J.12, 3061–3071 (1993) ArticleCASPubMedPubMed Central Google Scholar
Harding, S. E. Determination of macromolecular homogeneity, shape, and interactions using sedimentation velocity analytical ultracentrifugation. Methods Mol. Biol.22, 61–73 (1994) CASPubMed Google Scholar
Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol.305, 567–580 (2001) ArticleCASPubMed Google Scholar
Alber, F., Kim, M. F. & Sali, A. Structural characterization of assemblies from overall shape and subcomplex compositions. Structure13, 435–445 (2005) ArticleCASPubMed Google Scholar
Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature doi: 10.1038/nature06405 (this issue).
Akey, C. W. & Radermacher, M. Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. J. Cell Biol.122, 1–19 (1993) ArticleCASPubMed Google Scholar
Stoffler, D. et al. Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J. Mol. Biol.328, 119–130 (2003) ArticleCASPubMed Google Scholar
Kiseleva, E. et al. Yeast nuclear pore complexes have a cytoplasmic ring and internal filaments. J. Struct. Biol.145, 272–288 (2004) ArticleCASPubMed Google Scholar
Hinshaw, J. E., Carragher, B. O. & Milligan, R. A. Architecture and design of the nuclear pore complex. Cell69, 1133–1141 (1992) ArticleCASPubMed Google Scholar
Beck, M. et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science306, 1387–1390 (2004) ArticleADSCASPubMed Google Scholar
Pante, N. & Kann, M. Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol. Biol. Cell13, 425–434 (2002) ArticleCASPubMedPubMed Central Google Scholar
Drin, G. et al. A general amphipathic α-helical motif for sensing membrane curvature. Nature Struct. Mol. Biol.14, 138–146 (2007) ArticleCAS Google Scholar
Schurmann, G., Haspel, J., Grumet, M. & Erickson, H. P. Cell adhesion molecule L1 in folded (horseshoe) and extended conformations. Mol. Biol. Cell12, 1765–1773 (2001) ArticleCASPubMedPubMed Central Google Scholar