Davis, B. K., Wen, H. & Ting, J. P. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol.29, 707–735 (2011). CASPubMedPubMed Central Google Scholar
Dinarello, C. A. IL-1: discoveries, controversies and future directions. Eur. J. Immunol.40, 599–606 (2010). CASPubMed Google Scholar
Cerretti, D. P. et al. Molecular cloning of the interleukin-1β converting enzyme. Science256, 97–100 (1992). ADSCASPubMed Google Scholar
Keller, M., Ruegg, A., Werner, S. & Beer, H. D. Active caspase-1 is a regulator of unconventional protein secretion. Cell132, 818–831 (2008). CASPubMed Google Scholar
Bergsbaken, T., Fink, S. L. & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nature Rev. Microbiol.7, 99–109 (2009). CAS Google Scholar
Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder. Immunity20, 319–325 (2004). CASPubMed Google Scholar
Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell10, 417–426 (2002). CASPubMed Google Scholar
Grenier, J. M. et al. Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-κB and caspase-1. FEBS Lett.530, 73–78 (2002). CASPubMed Google Scholar
Wang, L. et al. PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-κB and caspase-1-dependent cytokine processing. J. Biol. Chem.277, 29874–29880 (2002). CASPubMed Google Scholar
Poyet, J. L. et al. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J. Biol. Chem.276, 28309–28313 (2001). CASPubMed Google Scholar
Fernandes-Alnemri, T., Yu, J. W., Datta, P., Wu, J. & Alnemri, E. S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature458, 509–513 (2009). ADSCASPubMedPubMed Central Google Scholar
Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature458, 514–518 (2009). ADSCASPubMedPubMed Central Google Scholar
Roberts, T. L. et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science323, 1057–1060 (2009). ADSCASPubMed Google Scholar
Kerur, N. et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi sarcoma-associated herpesvirus infection. Cell Host Microbe9, 363–375 (2011). CASPubMedPubMed Central Google Scholar
Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature440, 228–232 (2006). ADSCASPubMed Google Scholar
Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science320, 674–677 (2008). ADSCASPubMedPubMed Central Google Scholar
Petrilli, V. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ.14, 1583–1589 (2007). CASPubMed Google Scholar
Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature440, 237–241 (2006). ADSCASPubMed Google Scholar
Jin, M. S. & Lee, J. O. Structures of the Toll-like receptor family and its ligand complexes. Immunity29, 182–191 (2008). CASPubMed Google Scholar
Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunol.9, 847–856 (2008). CAS Google Scholar
Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunol.11, 136–140 (2010). CAS Google Scholar
Hornung, V. & Latz, E. Critical functions of priming and lysosomal damage for NLRP3 activation. Eur. J. Immunol.40, 620–623 (2010). CASPubMedPubMed Central Google Scholar
Bryan, N. B. et al. Differential splicing of the apoptosis-associated speck like protein containing a caspase recruitment domain (ASC) regulates inflammasomes. J. Inflamm.7, 23 10.1186/1476-9255-7-23 (2010). ArticleCAS Google Scholar
Stehlik, C. & Dorfleutner, A. COPs and POPs: modulators of inflammasome activity. J. Immunol.179, 7993–7998 (2007). CASPubMed Google Scholar
Young, J. L. et al. The serpin proteinase inhibitor 9 is an endogenous inhibitor of interleukin 1β-converting enzyme (caspase-1) activity in human vascular smooth muscle cells. J. Exp. Med.191, 1535–1544 (2000). CASPubMedPubMed Central Google Scholar
Bryan, N. B., Dorfleutner, A., Rojanasakul, Y. & Stehlik, C. Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. J. Immunol.182, 3173–3182 (2009). CASPubMed Google Scholar
Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature430, 213–218 (2004). ADSCASPubMed Google Scholar
Broz, P., von Moltke, J., Jones, J. W., Vance, R. E. & Monack, D. M. Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe8, 471–483 (2010). CASPubMedPubMed Central Google Scholar
Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature456, 264–268 (2008). ADSCASPubMed Google Scholar
Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature469, 221–225 (2011). ADSCASPubMed Google Scholar
Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunol.12, 222–230 (2011). CAS Google Scholar
Guarda, G. et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity34, 213–223 (2011). CASPubMed Google Scholar
Guarda, G. et al. T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes. Nature460, 269–273 (2009). ADSCASPubMed Google Scholar
Elinav, E., Strowig, T., Henao-Mejia, J. & Flavell, R. A. Regulation of the antimicrobial response by NLR proteins. Immunity34, 665–679 (2011). CASPubMed Google Scholar
Ichinohe, T., Pang, I. K. & Iwasaki, A. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nature Immunol.11, 404–410 (2010). CAS Google Scholar
Sander, L. E. et al. Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature474, 385–389 (2011). ADSCASPubMedPubMed Central Google Scholar
Boyden, E. D. & Dietrich, W. F. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nature Genet.38, 240–244 (2006). CASPubMed Google Scholar
Hsu, L. C. et al. A NOD2–NALP1 complex mediates caspase-1-dependent IL-1β secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc. Natl Acad. Sci. USA105, 7803–7808 (2008). ADSCASPubMedPubMed Central Google Scholar
Faustin, B. et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol. Cell25, 713–724 (2007). CASPubMed Google Scholar
Sutterwala, F. S. et al. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J. Exp. Med.204, 3235–3245 (2007). CASPubMedPubMed Central Google Scholar
Miao, E. A. et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc. Natl Acad. Sci. USA107, 3076–3080 (2010). ADSCASPubMedPubMed Central Google Scholar
Lightfield, K. L. et al. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nature Immunol.9, 1171–1178 (2008). CAS Google Scholar
Lamkanfi, M. et al. The Nod-like receptor family member Naip5/Birc1e restricts Legionella pneumophila growth independently of caspase-1 activation. J. Immunol.178, 8022–8027 (2007). CASPubMed Google Scholar
Kofoed, E. M. & Vance, R. E. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature477, 592–595 (2011). ADSCASPubMedPubMed Central Google Scholar
Fernandes-Alnemri, T. et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis . Nature Immunol.11, 385–393 (2010). CAS Google Scholar
Rathinam, V. A. et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nature Immunol.11, 395–402 (2010). CAS Google Scholar
Miao, E. A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nature Immunol.11, 1136–1142 (2010). CAS Google Scholar
Broz, P. et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella . J. Exp. Med.207, 1745–1755 (2010). CASPubMedPubMed Central Google Scholar
Taxman, D. J., Huang, M. T. & Ting, J. P. Inflammasome inhibition as a pathogenic stealth mechanism. Cell Host Microbe8, 7–11 (2010). CASPubMedPubMed Central Google Scholar
Stasakova, J. et al. Influenza A mutant viruses with altered NS1 protein function provoke caspase-1 activation in primary human macrophages, resulting in fast apoptosis and release of high levels of interleukins 1β and 18. J. Gen. Virol.86, 185–195 (2005). CASPubMed Google Scholar
Ray, C. A. et al. Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1β converting enzyme. Cell69, 597–604 (1992). CASPubMed Google Scholar
Cassel, S. L. et al. The Nalp3 inflammasome is essential for the development of silicosis. Proc. Natl Acad. Sci. USA105, 9035–9040 (2008). ADSCASPubMedPubMed Central Google Scholar
Denoble, A. E. et al. Uric acid is a danger signal of increasing risk for osteoarthritis through inflammasome activation. Proc. Natl Acad. Sci. USA108, 2088–2093 (2011). ADSCASPubMedPubMed Central Google Scholar
Pazar, B. et al. Basic calcium phosphate crystals induce monocyte/macrophage IL-1β secretion through the NLRP3 inflammasome in vitro . J. Immunol.186, 2495–2502 (2011). CASPubMed Google Scholar
Kool, M. et al. Alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol.181, 3755–3759 (2008). CASPubMed Google Scholar
Li, H., Willingham, S. B., Ting, J. P. & Re, F. Inflammasome activation by alum and alum's adjuvant effect are mediated by NLRP3. J. Immunol.181, 17–21 (2008). CASPubMed Google Scholar
Eisenbarth, S. C., Colegio, O. R., O'Connor, W., Sutterwala, F. S. & Flavell, R. A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature453, 1122–1126 (2008). ADSCASPubMedPubMed Central Google Scholar
Kuroda, E. et al. Silica crystals and aluminum salts regulate the production of prostaglandin in macrophages via NALP3 inflammasome-independent mechanisms. Immunity34, 514–526 (2011). CASPubMed Google Scholar
Ellebedy, A. H. et al. Inflammasome-independent role of the apoptosis-associated speck-like protein containing CARD (ASC) in the adjuvant effect of MF59. Proc. Natl Acad. Sci. USA108, 2927–2932 (2011). ADSCASPubMedPubMed Central Google Scholar
McKee, A. S. et al. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J. Immunol.183, 4403–4414 (2009). CASPubMed Google Scholar
Franchi, L. & Nunez, G. The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1β secretion but dispensable for adjuvant activity. Eur. J. Immunol.38, 2085–2089 (2008). CASPubMedPubMed Central Google Scholar
Flach, T. L. et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nature Med.17, 479–487 (2011). CASPubMed Google Scholar
Feve, B. & Bastard, J. P. The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nature Rev. Endocrinol.5, 305–311 (2009). CAS Google Scholar
Netea, M. G. et al. Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nature Med.12, 650–656 (2006). CASPubMed Google Scholar
Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nature Med.17, 179–188 (2011). CASPubMed Google Scholar
Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest.117, 175–184 (2007). CASPubMedPubMed Central Google Scholar
Wen, H. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nature Immunol.12, 408–415 (2011). CAS Google Scholar
Stienstra, R. et al. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab.12, 593–605 (2010). CASPubMedPubMed Central Google Scholar
Dinarello, C. A., Donath, M. Y. & Mandrup-Poulsen, T. Role of IL-1β in type 2 diabetes. Curr. Opin. Endocrinol. Diabetes Obes.17, 314–321 (2010). CASPubMed Google Scholar
Larsen, C. M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med.356, 1517–1526 (2007). CASPubMed Google Scholar
Seino, S & Study Group of Comprehensive Analysis of Genetic Factors in Diabetes Mellitus. S20G mutation of the amylin gene is associated with type II diabetes in Japanese. Study Group of Comprehensive Analysis of Genetic Factors in Diabetes Mellitus. Diabetologia44, 906–909 (2001). CASPubMed Google Scholar
Masters, S. L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nature Immunol.11, 897–904 (2010). CAS Google Scholar
Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature464, 1357–1361 (2010). ADSCASPubMedPubMed Central Google Scholar
Plump, A. S. et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell71, 343–353 (1992). CASPubMed Google Scholar
Chi, H., Messas, E., Levine, R. A., Graves, D. T. & Amar, S. Interleukin-1 receptor signaling mediates atherosclerosis associated with bacterial exposure and/or a high-fat diet in a murine apolipoprotein E heterozygote model: pharmacotherapeutic implications. Circulation110, 1678–1685 (2004). CASPubMed Google Scholar
Isoda, K. & Ohsuzu, F. The effect of interleukin-1 receptor antagonist on arteries and cholesterol metabolism. J. Atheroscler. Thromb.13, 21–30 (2006). CASPubMed Google Scholar
Menu, P. et al. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis.2, e137 (2011). CASPubMedPubMed Central Google Scholar
Maloy, K. J. & Powrie, F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature474, 298–306 (2011). ADSCASPubMed Google Scholar
Siegmund, B., Lehr, H. A., Fantuzzi, G. & Dinarello, C. A. IL-1β -converting enzyme (caspase-1) in intestinal inflammation. Proc. Natl Acad. Sci. USA98, 13249–13254 (2001). ADSCASPubMedPubMed Central Google Scholar
Bauer, C. et al. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut59, 1192–1199 (2010). CASPubMed Google Scholar
Allen, I. C. et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J. Exp. Med.207, 1045–1056 (2010). CASPubMedPubMed Central Google Scholar
Hirota, S. A. et al. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm. Bowel Dis.17, 1359–1372 (2011). PubMed Google Scholar
Zaki, M. H. et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity32, 379–391 (2010). CASPubMedPubMed Central Google Scholar
Dupaul-Chicoine, J. et al. Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity32, 367–378 (2010). CASPubMed Google Scholar
Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell145, 745–757 (2011). CASPubMedPubMed Central Google Scholar
Normand, S. et al. Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc. Natl Acad. Sci. USA108, 9601–9606 (2011). ADSCASPubMedPubMed Central Google Scholar
Chen, G. Y., Liu, M., Wang, F., Bertin, J. & Nunez, G. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J. Immunol.186, 7187–7194 (2011). CASPubMed Google Scholar
Hu, B. et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc. Natl Acad. Sci. USA107, 21635–21640 (2010). ADSPubMedPubMed Central Google Scholar
Hoffman, H. M. & Wanderer, A. A. Inflammasome and IL-1β-mediated disorders. Curr. Allergy Asthma Rep.10, 229–235 (2010). CASPubMedPubMed Central Google Scholar
Saleh, M. & Trinchieri, G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nature Rev. Immunol.11, 9–20 (2011). CAS Google Scholar
De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA107, 14691–14696 (2010). ADSPubMedPubMed Central Google Scholar