Selsted, M.E. & Ouellette, A.J. Mammalian defensins in the antimicrobial immune response. Nat. Immunol.6, 551–557 (2005). ArticleCAS Google Scholar
Owen, S.M. et al. RC-101, a retrocyclin-1 analogue with enhanced activity against primary HIV type 1 isolates. AIDS Res. Hum. Retroviruses20, 1157–1165 (2004). ArticleCAS Google Scholar
Munk, C. et al. The θ-defensin, retrocyclin, inhibits HIV-1 entry. AIDS Res. Hum. Retroviruses19, 875–881 (2003). Article Google Scholar
Yasin, B. et al. Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J. Virol.78, 5147–5156 (2004). ArticleCAS Google Scholar
Holmskov, U., Thiel, S. & Jensenius, J.C. Collections and ficolins: humoral lectins of the innate immune defense. Annu. Rev. Immunol.21, 547–578 (2003). ArticleCAS Google Scholar
Etchison, J., Doyle, M., Penhoet, E. & Holland, J. Synthesis and cleavage of influenza virus proteins. J. Virol.7, 155–167 (1971). CASPubMedPubMed Central Google Scholar
Sun, X. & Whittaker, G.R. Role for influenza virus envelope cholesterol in virus entry and infection. J. Virol.77, 12543–12551 (2003). ArticleCAS Google Scholar
Skehel, J.J. & Wiley, D.C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem.69, 531–569 (2000). ArticleCAS Google Scholar
Chernomordik, L.V., Leikina, E., Frolov, V., Bronk, P. & Zimmerberg, J. An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids. J. Cell Biol.136, 81–94 (1997). ArticleCAS Google Scholar
Rust, M.J., Lakadamyali, M., Zhang, F. & Zhuang, X. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat. Struct. Mol. Biol.11, 567–573 (2004). ArticleCAS Google Scholar
Wang, W. et al. Activity of α- and θ-defensins against primary isolates of HIV-1. J. Immunol.173, 515–520 (2004). ArticleCAS Google Scholar
Schoch, C., Blumenthal, R. & Clague, M.J. A long-lived state for influenza virus-erythrocyte complexes committed to fusion at neutral pH. FEBS Lett.311, 221–225 (1992). ArticleCAS Google Scholar
Korte, T. et al. Transient changes of the conformation of hemagglutinin of influenza virus at low pH detected by time-resolved circular dichroism spectroscopy. J. Biol. Chem.272, 9764–9770 (1997). ArticleCAS Google Scholar
Chernomordik, L.V., Frolov, V.A., Leikina, E., Bronk, P. & Zimmerberg, J. The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation. J. Cell Biol.140, 1369–1382 (1998). ArticleCAS Google Scholar
Leikina, E. & Chernomordik, L.V. Reversible merger of membranes at the early stage of influenza hemagglutinin-mediated fusion. Mol. Biol. Cell11, 2359–2371 (2000). ArticleCAS Google Scholar
Melikyan, G.B. et al. Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J. Cell Biol.151, 413–423 (2000). ArticleCAS Google Scholar
Russell, C.J., Jardetzky, T.S. & Lamb, R.A. Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion. EMBO J.20, 4024–4034 (2001). ArticleCAS Google Scholar
Stegmann, T., White, J.M. & Helenius, A. Intermediates in influenza induced membrane fusion. EMBO J.9, 4231–4241 (1990). ArticleCAS Google Scholar
Tamm, L.K. Hypothesis: spring-loaded boomerang mechanism of influenza hemagglutinin-mediated membrane fusion. Biochim. Biophys. Acta1614, 14–23 (2003). ArticleCAS Google Scholar
Earp, L.J., Delos, S.E., Park, H.E. & White, J.M. The many mechanisms of viral membrane fusion proteins. Curr. Top. Microbiol. Immunol.285, 25–66 (2005). CASPubMed Google Scholar
Zaitseva, E., Mittal, A., Griffin, D.E. & Chernomordik, L.V. Class II fusion protein of alphaviruses drives membrane fusion through the same pathway as class I proteins. J. Cell Biol.169, 167–177 (2005). ArticleCAS Google Scholar
Melikyan, G.B., Brener, S.A., Ok, D.C. & Cohen, F.S. Inner but not outer membrane leaflets control the transition from glycosylphosphatidylinositol-anchored influenza hemagglutinin-induced hemifusion to full fusion. J. Cell Biol.136, 995–1005 (1997). ArticleCAS Google Scholar
Brydon, E.W., Smith, H. & Sweet, C. Influenza A virus-induced apoptosis in bronchiolar epithelial (NCI-H292) cells limits pro-inflammatory cytokine release. J. Gen. Virol.84, 2389–2400 (2003). ArticleCAS Google Scholar
Blissard, G.W. & Wenz, J.R. Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J. Virol.66, 6829–6835 (1992). CASPubMedPubMed Central Google Scholar
Chernomordik, L., Leikina, E. & Zimmerberg, J. Control of baculovirus gp64-induced syncytia formation by membrane lipid composition. J. Virol.69, 3049–3058 (1995). CASPubMedPubMed Central Google Scholar
Lescar, J. et al. The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell105, 137–148 (2001). ArticleCAS Google Scholar
Gibbons, D.L. et al. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature427, 320–325 (2004). ArticleCAS Google Scholar
Wang, W., Cole, A.M., Hong, T., Waring, A.J. & Lehrer, R.I. Retrocyclin, an antiretroviral θ-defensin, is a lectin. J. Immunol.170, 4708–4716 (2003). ArticleCAS Google Scholar
Schlessinger, J. et al. Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc. Natl. Acad. Sci. USA73, 2409–2413 (1976). ArticleCAS Google Scholar
Golan, D.E., Brown, C.S., Cianci, C.M., Furlong, S.T. & Caulfield, J.P. Schistosomula of Schistosoma mansoni use lysophosphatidylcholine to lyse adherent human red blood cells and immobilize red cell membrane components. J. Cell Biol.103, 819–828 (1986). ArticleCAS Google Scholar
Crouch, E., Hartshorn, K. & Ofek, I. Collectins and pulmonary innate immunity. Immunol. Rev.173, 52–65 (2000). ArticleCAS Google Scholar
Kase, T. et al. Human mannan-binding lectin inhibits the infection of influenza A virus without complement. Immunology97, 385–392 (1999). ArticleCAS Google Scholar
Quinones-Mateu, M.E. et al. Human epithelial β-defensins 2 and 3 inhibit HIV-1 replication. AIDS17, F39–F48 (2003). ArticleCAS Google Scholar
Schutte, B.C. & McCray, P.B., Jr. β-defensins in lung host defense. Annu. Rev. Physiol.64, 709–748 (2002). ArticleCAS Google Scholar
Chernomordik, L.V. & Kozlov, M.M. Protein-lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem.72, 175–207 (2003). ArticleCAS Google Scholar
Leikina, E. et al. Influenza hemagglutinins outside of the contact zone are necessary for fusion pore expansion. J. Biol. Chem.279, 26526–26532 (2004). ArticleCAS Google Scholar
Levroney, E.L. et al. Novel innate immune functions for galectin-1: galectin-1 inhibits cell fusion by nipah virus envelope glycoproteins and augments dendritic cell secretion of proinflammatory cytokines. J. Immunol.175, 413–420 (2005). ArticleCAS Google Scholar
Thiel, S., Holmskov, U., Hviid, L., Laursen, S.B. & Jensenius, J.C. The concentration of the C-type lectin, mannan-binding protein, in human plasma increases during an acute phase response. Clin. Exp. Immunol.90, 31–35 (1992). ArticleCAS Google Scholar
Kandel, R. & Hartshorn, K.L. Novel strategies for prevention and treatment of influenza. Expert Opin. Ther. Targets9, 1–22 (2005). ArticleCAS Google Scholar
Tecle, T., White, M.R. & Hartshorn, K.L. Innate immunity to influenza A virus infection. Curr. Resp. Med. Rev.1, 127–145 (2005). ArticleCAS Google Scholar
Eisen, D.P. & Minchinton, R.M. Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin. Infect. Dis.37, 1496–1505 (2003). ArticleCAS Google Scholar
Sawaki, K. et al. High concentration of β-defensin-2 in oral squamous cell carcinoma. Anticancer Res.22, 2103–2107 (2002). CASPubMed Google Scholar
Paterson, R.G. & Lamb, R.A. in Molecular virology: a Practical Approach (eds. Davidson, A. & Elliott, R.M.) 35–73 (IRL Oxford University Press, Oxford, England, 1993). Google Scholar
Mahy, B.W.J. & Kangro, H.O. Virology Methods Manual (Academic Press, San Diego, 1996). Google Scholar
Hoekstra, D., de Boer, T., Klappe, K. & Wilschut, J. Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry23, 5675–5681 (1984). ArticleCAS Google Scholar
Doxsey, S.J., Sambrook, J., Helenius, A. & White, J. An efficient method for introducing macromolecules into living cells. J. Cell Biol.101, 19–27 (1985). ArticleCAS Google Scholar
Hierholzer, J.C., Castells, E., Banks, G.G., Bryan, J.A. & McEwen, C.T. Sensitivity of NCI-H292 human lung mucoepidermoid cells for respiratory and other human viruses. J. Clin. Microbiol.31, 1504–1510 (1993). CASPubMedPubMed Central Google Scholar
Koppel, D.E., Axelrod, D., Schlessinger, J., Elson, E.L. & Webb, W.W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys. J.16, 1315–1329 (1976). ArticleCAS Google Scholar