Carbohydrate-binding molecules inhibit viral fusion and entry by crosslinking membrane glycoproteins (original) (raw)

References

  1. Smith, A.E. & Helenius, A. How viruses enter animal cells. Science 304, 237–242 (2004).
    Article CAS Google Scholar
  2. Lehrer, R.I. Primate defensins. Nat. Rev. Microbiol. 2, 727–738 (2004).
    Article CAS Google Scholar
  3. Selsted, M.E. & Ouellette, A.J. Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 6, 551–557 (2005).
    Article CAS Google Scholar
  4. Owen, S.M. et al. RC-101, a retrocyclin-1 analogue with enhanced activity against primary HIV type 1 isolates. AIDS Res. Hum. Retroviruses 20, 1157–1165 (2004).
    Article CAS Google Scholar
  5. Munk, C. et al. The θ-defensin, retrocyclin, inhibits HIV-1 entry. AIDS Res. Hum. Retroviruses 19, 875–881 (2003).
    Article Google Scholar
  6. Yasin, B. et al. Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J. Virol. 78, 5147–5156 (2004).
    Article CAS Google Scholar
  7. Holmskov, U., Thiel, S. & Jensenius, J.C. Collections and ficolins: humoral lectins of the innate immune defense. Annu. Rev. Immunol. 21, 547–578 (2003).
    Article CAS Google Scholar
  8. Etchison, J., Doyle, M., Penhoet, E. & Holland, J. Synthesis and cleavage of influenza virus proteins. J. Virol. 7, 155–167 (1971).
    CAS PubMed PubMed Central Google Scholar
  9. Sun, X. & Whittaker, G.R. Role for influenza virus envelope cholesterol in virus entry and infection. J. Virol. 77, 12543–12551 (2003).
    Article CAS Google Scholar
  10. Skehel, J.J. & Wiley, D.C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69, 531–569 (2000).
    Article CAS Google Scholar
  11. Chernomordik, L.V., Leikina, E., Frolov, V., Bronk, P. & Zimmerberg, J. An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids. J. Cell Biol. 136, 81–94 (1997).
    Article CAS Google Scholar
  12. Rust, M.J., Lakadamyali, M., Zhang, F. & Zhuang, X. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat. Struct. Mol. Biol. 11, 567–573 (2004).
    Article CAS Google Scholar
  13. Wang, W. et al. Activity of α- and θ-defensins against primary isolates of HIV-1. J. Immunol. 173, 515–520 (2004).
    Article CAS Google Scholar
  14. Schoch, C., Blumenthal, R. & Clague, M.J. A long-lived state for influenza virus-erythrocyte complexes committed to fusion at neutral pH. FEBS Lett. 311, 221–225 (1992).
    Article CAS Google Scholar
  15. Korte, T. et al. Transient changes of the conformation of hemagglutinin of influenza virus at low pH detected by time-resolved circular dichroism spectroscopy. J. Biol. Chem. 272, 9764–9770 (1997).
    Article CAS Google Scholar
  16. Chernomordik, L.V., Frolov, V.A., Leikina, E., Bronk, P. & Zimmerberg, J. The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation. J. Cell Biol. 140, 1369–1382 (1998).
    Article CAS Google Scholar
  17. Leikina, E. & Chernomordik, L.V. Reversible merger of membranes at the early stage of influenza hemagglutinin-mediated fusion. Mol. Biol. Cell 11, 2359–2371 (2000).
    Article CAS Google Scholar
  18. Melikyan, G.B. et al. Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J. Cell Biol. 151, 413–423 (2000).
    Article CAS Google Scholar
  19. Russell, C.J., Jardetzky, T.S. & Lamb, R.A. Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion. EMBO J. 20, 4024–4034 (2001).
    Article CAS Google Scholar
  20. Stegmann, T., White, J.M. & Helenius, A. Intermediates in influenza induced membrane fusion. EMBO J. 9, 4231–4241 (1990).
    Article CAS Google Scholar
  21. Tamm, L.K. Hypothesis: spring-loaded boomerang mechanism of influenza hemagglutinin-mediated membrane fusion. Biochim. Biophys. Acta 1614, 14–23 (2003).
    Article CAS Google Scholar
  22. Earp, L.J., Delos, S.E., Park, H.E. & White, J.M. The many mechanisms of viral membrane fusion proteins. Curr. Top. Microbiol. Immunol. 285, 25–66 (2005).
    CAS PubMed Google Scholar
  23. Zaitseva, E., Mittal, A., Griffin, D.E. & Chernomordik, L.V. Class II fusion protein of alphaviruses drives membrane fusion through the same pathway as class I proteins. J. Cell Biol. 169, 167–177 (2005).
    Article CAS Google Scholar
  24. Melikyan, G.B., Brener, S.A., Ok, D.C. & Cohen, F.S. Inner but not outer membrane leaflets control the transition from glycosylphosphatidylinositol-anchored influenza hemagglutinin-induced hemifusion to full fusion. J. Cell Biol. 136, 995–1005 (1997).
    Article CAS Google Scholar
  25. Brydon, E.W., Smith, H. & Sweet, C. Influenza A virus-induced apoptosis in bronchiolar epithelial (NCI-H292) cells limits pro-inflammatory cytokine release. J. Gen. Virol. 84, 2389–2400 (2003).
    Article CAS Google Scholar
  26. Blissard, G.W. & Wenz, J.R. Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J. Virol. 66, 6829–6835 (1992).
    CAS PubMed PubMed Central Google Scholar
  27. Chernomordik, L., Leikina, E. & Zimmerberg, J. Control of baculovirus gp64-induced syncytia formation by membrane lipid composition. J. Virol. 69, 3049–3058 (1995).
    CAS PubMed PubMed Central Google Scholar
  28. Lescar, J. et al. The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105, 137–148 (2001).
    Article CAS Google Scholar
  29. Gibbons, D.L. et al. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature 427, 320–325 (2004).
    Article CAS Google Scholar
  30. Wang, W., Cole, A.M., Hong, T., Waring, A.J. & Lehrer, R.I. Retrocyclin, an antiretroviral θ-defensin, is a lectin. J. Immunol. 170, 4708–4716 (2003).
    Article CAS Google Scholar
  31. Schlessinger, J. et al. Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc. Natl. Acad. Sci. USA 73, 2409–2413 (1976).
    Article CAS Google Scholar
  32. Golan, D.E., Brown, C.S., Cianci, C.M., Furlong, S.T. & Caulfield, J.P. Schistosomula of Schistosoma mansoni use lysophosphatidylcholine to lyse adherent human red blood cells and immobilize red cell membrane components. J. Cell Biol. 103, 819–828 (1986).
    Article CAS Google Scholar
  33. Crouch, E., Hartshorn, K. & Ofek, I. Collectins and pulmonary innate immunity. Immunol. Rev. 173, 52–65 (2000).
    Article CAS Google Scholar
  34. Kase, T. et al. Human mannan-binding lectin inhibits the infection of influenza A virus without complement. Immunology 97, 385–392 (1999).
    Article CAS Google Scholar
  35. Quinones-Mateu, M.E. et al. Human epithelial β-defensins 2 and 3 inhibit HIV-1 replication. AIDS 17, F39–F48 (2003).
    Article CAS Google Scholar
  36. Schutte, B.C. & McCray, P.B., Jr. β-defensins in lung host defense. Annu. Rev. Physiol. 64, 709–748 (2002).
    Article CAS Google Scholar
  37. Chernomordik, L.V. & Kozlov, M.M. Protein-lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem. 72, 175–207 (2003).
    Article CAS Google Scholar
  38. Leikina, E. et al. Influenza hemagglutinins outside of the contact zone are necessary for fusion pore expansion. J. Biol. Chem. 279, 26526–26532 (2004).
    Article CAS Google Scholar
  39. Levroney, E.L. et al. Novel innate immune functions for galectin-1: galectin-1 inhibits cell fusion by nipah virus envelope glycoproteins and augments dendritic cell secretion of proinflammatory cytokines. J. Immunol. 175, 413–420 (2005).
    Article CAS Google Scholar
  40. Thiel, S., Holmskov, U., Hviid, L., Laursen, S.B. & Jensenius, J.C. The concentration of the C-type lectin, mannan-binding protein, in human plasma increases during an acute phase response. Clin. Exp. Immunol. 90, 31–35 (1992).
    Article CAS Google Scholar
  41. Kandel, R. & Hartshorn, K.L. Novel strategies for prevention and treatment of influenza. Expert Opin. Ther. Targets 9, 1–22 (2005).
    Article CAS Google Scholar
  42. Tecle, T., White, M.R. & Hartshorn, K.L. Innate immunity to influenza A virus infection. Curr. Resp. Med. Rev. 1, 127–145 (2005).
    Article CAS Google Scholar
  43. Eisen, D.P. & Minchinton, R.M. Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin. Infect. Dis. 37, 1496–1505 (2003).
    Article CAS Google Scholar
  44. Sawaki, K. et al. High concentration of β-defensin-2 in oral squamous cell carcinoma. Anticancer Res. 22, 2103–2107 (2002).
    CAS PubMed Google Scholar
  45. Paterson, R.G. & Lamb, R.A. in Molecular virology: a Practical Approach (eds. Davidson, A. & Elliott, R.M.) 35–73 (IRL Oxford University Press, Oxford, England, 1993).
    Google Scholar
  46. Mahy, B.W.J. & Kangro, H.O. Virology Methods Manual (Academic Press, San Diego, 1996).
    Google Scholar
  47. Hoekstra, D., de Boer, T., Klappe, K. & Wilschut, J. Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 23, 5675–5681 (1984).
    Article CAS Google Scholar
  48. Doxsey, S.J., Sambrook, J., Helenius, A. & White, J. An efficient method for introducing macromolecules into living cells. J. Cell Biol. 101, 19–27 (1985).
    Article CAS Google Scholar
  49. Hierholzer, J.C., Castells, E., Banks, G.G., Bryan, J.A. & McEwen, C.T. Sensitivity of NCI-H292 human lung mucoepidermoid cells for respiratory and other human viruses. J. Clin. Microbiol. 31, 1504–1510 (1993).
    CAS PubMed PubMed Central Google Scholar
  50. Koppel, D.E., Axelrod, D., Schlessinger, J., Elson, E.L. & Webb, W.W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys. J. 16, 1315–1329 (1976).
    Article CAS Google Scholar

Download references