Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate (original) (raw)

References

  1. Henchal, E.A. & Putnak, J.R. The dengue viruses. Clin. Microbiol. Rev. 3, 376–396 (1990).
    Article CAS PubMed PubMed Central Google Scholar
  2. Institute of Medicine (U.S.), Committee on Emerging Microbial Threats to Health. Emerging Infections: Microbial Threats to Health in the United States (National Academy Press, Washington, DC, 1992).
  3. Halstead, S.B. The XXth century dengue pandemic: Need for surveillance and research. World Health Stat. Q. 45, 292–298 (1992).
    CAS PubMed Google Scholar
  4. Monath, T.P. Dengue: The risk to developed and developing countries. Proc. Natl. Acad. Sci. USA 91, 2395–2400 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  5. World Health Organization. Dengue and dengue hemorrhagic fever. Report N117. (World Health Organization, Geneva, 1996).
  6. Centers for Disease Control. Dengue Fever at the U.S.–Mexico Border, 1995–1996. Morbid. Mortal. Weekly Rep. 45, N39 (1996).
  7. Tyler, K.L. & Fields, B.N. Pathogenesis of viral infections. in Fields Virology, 3rd edn., Vol. 1. (eds. Fields, B.N., Knipe, D.M. & Howley, P.M.) 173–217 (Lippincott-Raven, Philadelphia, 1996).
    Google Scholar
  8. Wimmer, E. in Cellular Receptors for Animal Viruses. (ed. Wimmer, E.) 1–13 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1994).
    Google Scholar
  9. Porterfield, J.S. Antibody-dependent enhancement of viral infectivity. Adv. Virus. Res. 31, 335–355 (1986).
    Article CAS PubMed Google Scholar
  10. He, R.-T. et al. Antibodies that block virus attachment to Vero cells are a major component of the human neutralizing antibody response against dengue virus type 2. J. Med. Virol. 45, 451–461 (1995).
    Article CAS PubMed Google Scholar
  11. Rice, C.M. Flaviviridae: The viruses and their replication. in Fields Virology, 3rd edn., Vol. 1. (eds. Fields, B.N., Knipe, D.M. & Howley, P.M.) 931–959 (Lippincott-Raven, Philadelphia, 1996).
    Google Scholar
  12. Chen, Y., Maguire, T. & Marks, R.M. Demonstration of binding of dengue virus envelope protein to target cells. J. Virol. 70, 8765–8772 (1996).
    CAS PubMed PubMed Central Google Scholar
  13. Couchman, J.R. & Woods, A. Structure and biology of pericellular proteoglycans. in Cell Structure and Extracellular Glycoconjugates, Vol. 1. (eds. Roberts, D.D. & Mecham, R.P.) 33–82 (Academic Press, New York, 1993).
    Chapter Google Scholar
  14. Rostand, K.S. & Esko, J.D. Microbial adherence and invasion through proteoglycans. Infect. Immun. 65, 1–8 (1997).
    CAS PubMed PubMed Central Google Scholar
  15. Thompson, L.D., Pantoliano, M.W. & Springer, B.A. Energetic characterization of the basic fibroblast growth factor–heparin interaction: Identification of the heparin binding domain. Biochemistry 33, 3831–3840 (1994).
    Article CAS PubMed Google Scholar
  16. Fromm, J.R., Hileman, R.E., Caldwell, E.E., Weiler, J.M. & Linhardt, R.J. Differences in the interaction of heparin with arginine and lysine and the importance of these basic amino acids in the binding of heparin to acidic fibroblast growth factor. Arch. Biochem. Biophys. 323, 279–287 (1995).
    Article CAS PubMed Google Scholar
  17. Bernfield, M. et al. Biology of syndecans. Annu. Rev. Cell Biol. 8, 365–393 (1992).
    Article CAS PubMed Google Scholar
  18. Toida, T., Imanari, T., Hileman, R.E., Fromm, J.R. & Linhardt, R.J. Structural differences in heparan sulfates from different tissues and species. Biochem. J. 322, 499–506 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  19. Linhardt, R.J. & Toida, T. Heparin oligosaccharides-new analogs development and application. in Carbohydrates as Drugs (eds. Witczak, Z.B. & Nieforth, K.A.) 277–341 (Marcel Dekker, New York, 1997).
    Google Scholar
  20. Pervin, A., Callo, C., Jandik, K.A., Han, X.J. & Linhardt, R.J. Preparation and structural characterization of large heparin-derived oligosaccharides. Glycobiology 5, 83–95 (1995).
    Article CAS PubMed Google Scholar
  21. Toida, T., Hileman, R.E., Smith, A.E., Vlahova, P.I. & Linhardt, R.J. Enzymatic preparation of heparin oligosaccharides containing antithrombin III binding sites. J. Biol. Chem. 271, 32040–32047 (1996).
    Article CAS PubMed Google Scholar
  22. Linhardt, R.J. Analysis of glycoconjugates. in Current Protocols in Molecular Biology, Vol. 2. (ed. Varki, A.) 17.13.17–17.13.32 (Wiley Interscience, Boston, 1994).
    Google Scholar
  23. Bame, K.J. & Esko, J.D. Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant defective in heparan sulfate _N_-sulfotransferase. J. Biol. Chem. 264, 8059–8065 (1989).
    CAS PubMed Google Scholar
  24. Esko, J.D. et al. Inhibition of chondroitin and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I. J. Biol. Chem. 262, 12189–12195 (1987).
    CAS PubMed Google Scholar
  25. Lidholt, K. et al. A single mutation affects both _N_-acetylglucosaminyltransferaseand glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proc. Notl. Acad. Sci. USA 89, 2267–2271 (1992).
    Article CAS Google Scholar
  26. Esko, J.D., Stewart, T.E. & Taylor, W.H. Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc. Natl. Acad. Sci. USA 82, 3197–3201 (1985).
    Article CAS PubMed PubMed Central Google Scholar
  27. Baeuerle, P.A. & Huttner, W.B. Chlorate–a potent inhibitor of protein sulfation in intact cells. Biochem. Biophys. Res. Commun. 141, 870–877 (1986).
    Article CAS PubMed Google Scholar
  28. Raake, W., Klauser, R.J., Elling, H. & Meinetsberger, E. Anticoagulant and an-tithrombotic properties of synthetic sulfated _bis_-lactobionic acid amides. Thromb. Res. 56, 719–730 (1989).
    Article CAS PubMed Google Scholar
  29. Sternbergh, W.C., Sobel, M. & Makhoul, R.G. Heparinoids with low anticoagulant potency attenuate postischemic endothelial cell dysfunction. J. Vasc. Surg. 21, 477–483 (1995).
    Article PubMed Google Scholar
  30. Mohan, P., Hopfinger, A.J. & Baba, M. Naphthalenedisulfonic acid derivatives as potential anti-HIV agents: Chemistry, biology and molecular modeling of their inhibition of reverse transcriptase. Antiviral Chem. Chemother. 2, 215–222 (1991).
    Article CAS Google Scholar
  31. Cardin, A.D. & Weintraub, H.J. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 9, 21–32 (1989).
    Article CAS PubMed Google Scholar
  32. Faham, S., Hileman, R.E., Fromm, J.R., Linhardt, R.J. & Rees, D.C. Heparin structure and interactions with basic fibroblast growth factor. Science 271, 1116–1120 (1996).
    Article CAS PubMed Google Scholar
  33. Chen, W.-B. & Maguire, T. Nucleotide sequence of the envelope glycoprotein gene of a dengue-2 virus isolated during an epidemic of benign dengue fever in Tonga in 1974. Nucleic Acids Res. 18, 5889 (1990).
    Article CAS PubMed PubMed Central Google Scholar
  34. Rey, F.A., Heinz, F.X., Mandl, C., Kunz, C. & Harrison, S.C. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375, 291–298 (1995).
    Article CAS PubMed Google Scholar
  35. Peitsch, M.C. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem. Soc. Trans. 24, 274–279 (1996).
    Article CAS PubMed Google Scholar
  36. Bork, P., Holm, L. & Sander, C. The immunoglobulin fold. Structural classification sequence patterns and common core. J. Mol. Biol. 242, 309–320 (1994).
    CAS PubMed Google Scholar
  37. McClain, D.S. & Fuller, O. Cell-specific kinetics and efficiency of herpes simplex virus type 1 entry are determined by two distinct phases of attachment. Virology 198, 690–702. (1994).
    Article CAS PubMed Google Scholar
  38. Montgomery, R.I., Warner, M.S., Lum, B.J. & Spear, P. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NCF receptor family. Cell 87, 427–436 (1996).
    Article CAS PubMed Google Scholar
  39. Maccarana, M., Sakura, Y., Tawada, A., Yoshida, K. & Lindahl;, U. Domain structure of heparan sulfates from bovine organs. J. Biol. Chem. 271, 17804–17810 (1996).
    Article CAS PubMed Google Scholar
  40. Jackson, T. et al. Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J. Virol. 70, 5282–5287 (1996).
    CAS PubMed PubMed Central Google Scholar
  41. Ortega-Barria, E. & Pereira, M.E. A novel T.cruzi heparin-binding protein promotes fibroblast adhesion and penetration of engineered bacteria and trypanosomes into mammalian cells. Cell 67, 411–421 (1991).
    Article CAS PubMed Google Scholar
  42. Ruoslahti, E. & Pierschbacher, M.D. New perspectives in cell adhesion: RGD and integrins. Science 238, 491–497 (1987).
    Article CAS PubMed Google Scholar
  43. Sanchez, I.J. & Ruiz, B.H. A single nucleotide change in the E protein of dengue virus 2 Mexican strain affects neurovirulence in mice. J. Gen. Virol. 77, 2541–2545 (1996).
    Article CAS PubMed Google Scholar
  44. Lin, B., Parrish, C.R., Murray, J.M. & Wright, P.J. Localization of a neutralization epi-tope on the envelope protein of dengue virus type 2. Virology 202, 885–890 (1994).
    Article CAS PubMed Google Scholar
  45. Jiang, W.R., Lowe, A., Higgs, S., Reid, H. & Gould, E.A. Single amino acid codon changes detected in louping ill virus antibody-resistant mutants with reduced neurovirulence. J. Gen. Virol. 74, 931–935 (1993).
    Article CAS PubMed Google Scholar
  46. Jennings, A.D. et al. Analysis of a yellow fever virus isolated from a fatal case of vaccine-associated human encephalitis. J. Infect. Dis. 169, 512–518 (1994).
    Article CAS PubMed Google Scholar
  47. Holzmann, H., Heinz, F.X., Mandl, C.W., Guirakhoo, F. & Kunz, C. A single amino acid substitution in envelope protein E of tick-borne encephalitis virus leads to attenuation in the mouse model. J. Virol. 64, 5156–5159 (1990).
    CAS PubMed PubMed Central Google Scholar
  48. Cecilia, D. & Gould, E.A. Nucleotide changes responsible for loss of neuroinvasive-ness in Japanese encephalitis virus neutralization-resistant mice. Virology 181, 70–77 (1991).
    Article CAS PubMed Google Scholar
  49. Reed, L.J. & Muench, H. A simple method of estimating fifty per cent end points. Am. J. Hygiene 27, 493–497. (1938).
    Google Scholar
  50. Ojala, W.H. et al. Complexes of lysine, histidine and arginine with sulfonated azo dyes: Model systems for understanding the biomolecular recognition of glycosaminoglycans by proteins. J. Am. Chem. Soc. 118, 2131–2142 (1996).
    Article CAS Google Scholar

Download references