Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness (original) (raw)

References

  1. Bittner, M. et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406, 536–540 (2000).
    CAS PubMed Google Scholar
  2. Hendrix, M.J., Seftor, E.A., Hess, A.R. & Seftor, R.E. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat. Rev. Cancer 3, 411–421 (2003).
    CAS PubMed Google Scholar
  3. Pierce, G.B., Pantazis, C.G., Caldwell, J.E. & Wells, R.S. Specificity of the control of tumor formation by the blastocyst. Cancer Res. 42, 1082–1087 (1982).
    CAS PubMed Google Scholar
  4. Gerschenson, M., Graves, K., Carson, S.D., Wells, R.S. & Pierce, G.B. Regulation of melanoma by the embryonic skin. Proc. Natl. Acad. Sci. USA 83, 7307–7310 (1986).
    CAS PubMed Google Scholar
  5. Lee, L.M., Seftor, E.A., Bonde, G., Cornell, R.A. & Hendrix, M.J. The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev. Dyn. 233, 1560–1570 (2005).
    CAS PubMed Google Scholar
  6. Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl. Acad. Sci. USA 72, 3585–3589 (1975).
    CAS PubMed Google Scholar
  7. Topczewska, J.M. et al. The winged helix transcription factor Foxc1a is essential for somitogenesis in zebrafish. Genes Dev. 15, 2483–2493 (2001).
    CAS PubMed PubMed Central Google Scholar
  8. De Robertis, E.M., Larrain, J., Oelgeschlager, M. & Wessely, O. The establishment of Spemann's organizer and patterning of the vertebrate embryo. Nat. Rev. Genet. 1, 171–181 (2000).
    CAS PubMed PubMed Central Google Scholar
  9. Niehrs, C. Regionally specific induction by the Spemann-Mangold organizer. Nat. Rev. Genet. 5, 425–434 (2004).
    CAS PubMed Google Scholar
  10. Hatta, K. & Takahashi, Y. Secondary axis induction by heterospecific organizers in zebrafish. Dev. Dyn. 205, 183–195 (1996).
    CAS PubMed Google Scholar
  11. Gritsman, K., Talbot, W.S. & Schier, A.F. Nodal signaling patterns the organizer. Development 127, 921–932 (2000).
    CAS PubMed Google Scholar
  12. Whitman, M. Nodal signaling in early vertebrate embryos: themes and variations. Dev. Cell 1, 605–617 (2001).
    CAS PubMed Google Scholar
  13. Schier, A.F. Nodal signaling in vertebrate development. Annu. Rev. Cell Dev. Biol. 19, 589–621 (2003).
    CAS PubMed Google Scholar
  14. Iannaccone, P.M., Zhou, X., Khokha, M., Boucher, D. & Kuehn, M.R. Insertional mutation of a gene involved in growth regulation of the early mouse embryo. Dev. Dyn. 194, 198–208 (1992).
    CAS PubMed Google Scholar
  15. Smith, J.C. Mesoderm-inducing factors and mesodermal patterning. Curr. Opin. Cell Biol. 7, 856–861 (1995).
    CAS PubMed Google Scholar
  16. Zhou, X., Sasaki, H., Lowe, L., Hogan, B.L. & Kuehn, M.R. Nodal is a novel TGF-β-like gene expressed in the mouse node during gastrulation. Nature 361, 543–547 (1993).
    CAS PubMed Google Scholar
  17. Rebagliati, M.R., Toyama, R., Haffter, P. & Dawid, I.B. Cyclops encodes a nodal-related factor involved in midline signaling. Proc. Natl. Acad. Sci. USA 95, 9932–9937 (1998).
    CAS PubMed Google Scholar
  18. Toyama, R., O'Connell, M.L., Wright, C.V., Kuehn, M.R. & Dawid, I.B. Nodal induces ectopic goosecoid and lim1 expression and axis duplication in zebrafish. Development 121, 383–391 (1995).
    CAS PubMed Google Scholar
  19. Halpern, M.E. et al. Genetic interactions in zebrafish midline development. Dev. Biol. 187, 154–170 (1997).
    CAS PubMed Google Scholar
  20. Chen, Y. & Schier, A.F. The zebrafish Nodal signal Squint functions as a morphogen. Nature 411, 607–610 (2001).
    CAS PubMed Google Scholar
  21. Cheng, S.K., Olale, F., Brivanlou, A.H. & Schier, A.F. Lefty blocks a subset of TGFβ signals by antagonizing EGF-CFC coreceptors. PLoS Biol. 2, 0215–0226 (2004).
    CAS Google Scholar
  22. Chen, C. & Shen, M.M. Two modes by which Lefty proteins inhibit nodal signaling. Curr. Biol. 14, 618–624 (2004).
    CAS PubMed Google Scholar
  23. Branford, W.W. & Yost, H.J. Nodal signaling: CrypticLefty mechanism of antagonism decoded. Curr. Biol. 14, R341–R343 (2004).
    CAS PubMed Google Scholar
  24. Besser, D. Expression of nodal, lefty-a, and lefty-b in undifferentiated human embryonic stem cells requires activation of Smad2/3. J. Biol. Chem. 279, 45076–45084 (2004).
    CAS PubMed Google Scholar
  25. Hendrix, M.J. et al. Coexpression of vimentin and keratins by human melanoma tumor cells: correlation with invasive and metastatic potential. J. Natl. Cancer Inst. 84, 165–174 (1992).
    CAS PubMed Google Scholar
  26. Hendrix, M.J., Seftor, E.A., Hess, A.R. & Seftor, R.E. Molecular plasticity of human melanoma cells. Oncogene 22, 3070–3075 (2003).
    CAS PubMed Google Scholar
  27. James, D., Levine, A.J., Besser, D. & Hemmati-Brivanlou, A. TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132, 1273–1282 (2005).
    CAS PubMed Google Scholar
  28. Vallier, L., Reynolds, D. & Pedersen, R.A. Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev. Biol. 275, 403–421 (2004).
    CAS PubMed Google Scholar
  29. Vallier, L., Alexander, M. & Pedersen, R.A. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J. Cell Sci. 118, 4495–4509 (2005).
    CAS PubMed Google Scholar
  30. Hendrix, M.J., Seftor, E.A., Kirschmann, D.A., Quaranta, V. & Seftor, R.E. Remodeling of the microenvironment by aggressive melanoma tumor cells. Ann. NY Acad. Sci. 995, 151–161 (2003).
    CAS PubMed Google Scholar
  31. Seftor, E.A. et al. Epigenetic transformation of normal melanocytes by a metastatic melanoma microenvironment. Cancer Res. 65, 10164–10169 (2005).
    CAS PubMed Google Scholar
  32. Chu, Y.W., Seftor, E.A., Romer, L.H. & Hendrix, M.J. Experimental coexpression of vimentin and keratin intermediate filaments in human melanoma cells augments motility. Am. J. Pathol. 148, 63–69 (1996).
    CAS PubMed PubMed Central Google Scholar
  33. Hendrix, M.J. et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc. Natl. Acad. Sci. USA 98, 8018–8023 (2001).
    CAS PubMed Google Scholar
  34. Takeuchi, H., Kuo, C., Morton, D.L., Wang, H.J. & Hoon, D.S. Expression of differentiation melanoma-associated antigen genes is associated with favorable disease outcome in advanced-stage melanomas. Cancer Res. 63, 441–448 (2003).
    CAS PubMed Google Scholar
  35. Martinez-Esparza, M., Solano, F. & Garcia-Borron, J.C. Independent regulation of tyrosinase by the hypopigmenting cytokines TGF β1 and TNF α and the melanogenic hormone α-MSH in B16 mouse melanocytes. Cell. Mol. Biol. 45, 991–1000 (1999).
    CAS PubMed Google Scholar
  36. Kim, D.S., Park, S.H. & Park, K.C. Transforming growth factor-β1 decreases melanin synthesis via delayed extracellular signal-regulated kinase activation. Int. J. Biochem. Cell Biol. 36, 1482–1491 (2004).
    CAS PubMed Google Scholar
  37. Nawshad, A., Lagamba, D., Polad, A. & Hay, E.D. Transforming growth factor-β signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells Tissues Organs 179, 11–23 (2005).
    CAS PubMed Google Scholar
  38. Javelaud, D. et al. Stable overexpression of Smad7 in human melanoma cells inhibits their tumorigenicity in vitro and in vivo. Oncogene 24, 7624–7629 (2005).
    CAS PubMed Google Scholar
  39. Juhasz, I. et al. Growth and invasion of human melanomas in human skin grafted to immunodeficient mice. Am. J. Pathol. 143, 528–537 (1993).
    CAS PubMed PubMed Central Google Scholar
  40. Adkins, H.B. et al. Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo. J. Clin. Invest. 112, 575–587 (2003).
    CAS PubMed PubMed Central Google Scholar
  41. Reya, T., Morrison, S.J., Clarke, M.F. & Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).
    CAS Google Scholar
  42. Fang, D. et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 65, 9328–9337 (2005).
    CAS PubMed Google Scholar
  43. Hendrix, M.J. et al. Transendothelial function of human metastatic melanoma cells: role of the microenvironment in cell-fate determination. Cancer Res. 62, 665–668 (2002).
    CAS PubMed Google Scholar
  44. Welch, D.R. et al. Characterization of a highly invasive and spontaneously metastatic human malignant melanoma cell line. Int. J. Cancer 47, 227–237 (1991).
    CAS PubMed Google Scholar
  45. Seftor, E.A. et al. Expression of multiple molecular phenotypes by aggressive melanoma tumor cells: role in vasculogenic mimicry. Crit. Rev. Oncol. Hematol. 44, 17–27 (2002).
    PubMed Google Scholar
  46. Solnica-Krezel, L., Schier, A.F. & Driever, W. Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136, 1401–1420 (1994).
    CAS PubMed PubMed Central Google Scholar
  47. Thisse, C., Thisse, B., Schilling, T.F. & Postlethwait, J.H. Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119, 1203–1215 (1993).
    CAS PubMed Google Scholar
  48. Hess, A.R. et al. Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Res. 61, 3250–3255 (2001).
    CAS PubMed Google Scholar
  49. Hendrix, M.J., Seftor, E.A., Seftor, R.E. & Fidler, I.J. A simple quantitative assay for studying the invasive potential of high and low human metastatic variants. Cancer Lett. 38, 137–147 (1987).
    CAS PubMed Google Scholar
  50. Maniotis, A.J. et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am. J. Pathol. 155, 739–752 (1999).
    CAS PubMed PubMed Central Google Scholar

Download references