Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness (original) (raw)
References
Bittner, M. et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature406, 536–540 (2000). CASPubMed Google Scholar
Hendrix, M.J., Seftor, E.A., Hess, A.R. & Seftor, R.E. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat. Rev. Cancer3, 411–421 (2003). CASPubMed Google Scholar
Pierce, G.B., Pantazis, C.G., Caldwell, J.E. & Wells, R.S. Specificity of the control of tumor formation by the blastocyst. Cancer Res.42, 1082–1087 (1982). CASPubMed Google Scholar
Gerschenson, M., Graves, K., Carson, S.D., Wells, R.S. & Pierce, G.B. Regulation of melanoma by the embryonic skin. Proc. Natl. Acad. Sci. USA83, 7307–7310 (1986). CASPubMed Google Scholar
Lee, L.M., Seftor, E.A., Bonde, G., Cornell, R.A. & Hendrix, M.J. The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev. Dyn.233, 1560–1570 (2005). CASPubMed Google Scholar
Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl. Acad. Sci. USA72, 3585–3589 (1975). CASPubMed Google Scholar
Topczewska, J.M. et al. The winged helix transcription factor Foxc1a is essential for somitogenesis in zebrafish. Genes Dev.15, 2483–2493 (2001). CASPubMedPubMed Central Google Scholar
De Robertis, E.M., Larrain, J., Oelgeschlager, M. & Wessely, O. The establishment of Spemann's organizer and patterning of the vertebrate embryo. Nat. Rev. Genet.1, 171–181 (2000). CASPubMedPubMed Central Google Scholar
Niehrs, C. Regionally specific induction by the Spemann-Mangold organizer. Nat. Rev. Genet.5, 425–434 (2004). CASPubMed Google Scholar
Hatta, K. & Takahashi, Y. Secondary axis induction by heterospecific organizers in zebrafish. Dev. Dyn.205, 183–195 (1996). CASPubMed Google Scholar
Gritsman, K., Talbot, W.S. & Schier, A.F. Nodal signaling patterns the organizer. Development127, 921–932 (2000). CASPubMed Google Scholar
Whitman, M. Nodal signaling in early vertebrate embryos: themes and variations. Dev. Cell1, 605–617 (2001). CASPubMed Google Scholar
Schier, A.F. Nodal signaling in vertebrate development. Annu. Rev. Cell Dev. Biol.19, 589–621 (2003). CASPubMed Google Scholar
Iannaccone, P.M., Zhou, X., Khokha, M., Boucher, D. & Kuehn, M.R. Insertional mutation of a gene involved in growth regulation of the early mouse embryo. Dev. Dyn.194, 198–208 (1992). CASPubMed Google Scholar
Smith, J.C. Mesoderm-inducing factors and mesodermal patterning. Curr. Opin. Cell Biol.7, 856–861 (1995). CASPubMed Google Scholar
Zhou, X., Sasaki, H., Lowe, L., Hogan, B.L. & Kuehn, M.R. Nodal is a novel TGF-β-like gene expressed in the mouse node during gastrulation. Nature361, 543–547 (1993). CASPubMed Google Scholar
Rebagliati, M.R., Toyama, R., Haffter, P. & Dawid, I.B. Cyclops encodes a nodal-related factor involved in midline signaling. Proc. Natl. Acad. Sci. USA95, 9932–9937 (1998). CASPubMed Google Scholar
Toyama, R., O'Connell, M.L., Wright, C.V., Kuehn, M.R. & Dawid, I.B. Nodal induces ectopic goosecoid and lim1 expression and axis duplication in zebrafish. Development121, 383–391 (1995). CASPubMed Google Scholar
Halpern, M.E. et al. Genetic interactions in zebrafish midline development. Dev. Biol.187, 154–170 (1997). CASPubMed Google Scholar
Chen, Y. & Schier, A.F. The zebrafish Nodal signal Squint functions as a morphogen. Nature411, 607–610 (2001). CASPubMed Google Scholar
Cheng, S.K., Olale, F., Brivanlou, A.H. & Schier, A.F. Lefty blocks a subset of TGFβ signals by antagonizing EGF-CFC coreceptors. PLoS Biol.2, 0215–0226 (2004). CAS Google Scholar
Chen, C. & Shen, M.M. Two modes by which Lefty proteins inhibit nodal signaling. Curr. Biol.14, 618–624 (2004). CASPubMed Google Scholar
Branford, W.W. & Yost, H.J. Nodal signaling: CrypticLefty mechanism of antagonism decoded. Curr. Biol.14, R341–R343 (2004). CASPubMed Google Scholar
Besser, D. Expression of nodal, lefty-a, and lefty-b in undifferentiated human embryonic stem cells requires activation of Smad2/3. J. Biol. Chem.279, 45076–45084 (2004). CASPubMed Google Scholar
Hendrix, M.J. et al. Coexpression of vimentin and keratins by human melanoma tumor cells: correlation with invasive and metastatic potential. J. Natl. Cancer Inst.84, 165–174 (1992). CASPubMed Google Scholar
Hendrix, M.J., Seftor, E.A., Hess, A.R. & Seftor, R.E. Molecular plasticity of human melanoma cells. Oncogene22, 3070–3075 (2003). CASPubMed Google Scholar
James, D., Levine, A.J., Besser, D. & Hemmati-Brivanlou, A. TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development132, 1273–1282 (2005). CASPubMed Google Scholar
Vallier, L., Reynolds, D. & Pedersen, R.A. Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev. Biol.275, 403–421 (2004). CASPubMed Google Scholar
Vallier, L., Alexander, M. & Pedersen, R.A. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J. Cell Sci.118, 4495–4509 (2005). CASPubMed Google Scholar
Hendrix, M.J., Seftor, E.A., Kirschmann, D.A., Quaranta, V. & Seftor, R.E. Remodeling of the microenvironment by aggressive melanoma tumor cells. Ann. NY Acad. Sci.995, 151–161 (2003). CASPubMed Google Scholar
Seftor, E.A. et al. Epigenetic transformation of normal melanocytes by a metastatic melanoma microenvironment. Cancer Res.65, 10164–10169 (2005). CASPubMed Google Scholar
Chu, Y.W., Seftor, E.A., Romer, L.H. & Hendrix, M.J. Experimental coexpression of vimentin and keratin intermediate filaments in human melanoma cells augments motility. Am. J. Pathol.148, 63–69 (1996). CASPubMedPubMed Central Google Scholar
Hendrix, M.J. et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc. Natl. Acad. Sci. USA98, 8018–8023 (2001). CASPubMed Google Scholar
Takeuchi, H., Kuo, C., Morton, D.L., Wang, H.J. & Hoon, D.S. Expression of differentiation melanoma-associated antigen genes is associated with favorable disease outcome in advanced-stage melanomas. Cancer Res.63, 441–448 (2003). CASPubMed Google Scholar
Martinez-Esparza, M., Solano, F. & Garcia-Borron, J.C. Independent regulation of tyrosinase by the hypopigmenting cytokines TGF β1 and TNF α and the melanogenic hormone α-MSH in B16 mouse melanocytes. Cell. Mol. Biol.45, 991–1000 (1999). CASPubMed Google Scholar
Kim, D.S., Park, S.H. & Park, K.C. Transforming growth factor-β1 decreases melanin synthesis via delayed extracellular signal-regulated kinase activation. Int. J. Biochem. Cell Biol.36, 1482–1491 (2004). CASPubMed Google Scholar
Nawshad, A., Lagamba, D., Polad, A. & Hay, E.D. Transforming growth factor-β signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells Tissues Organs179, 11–23 (2005). CASPubMed Google Scholar
Javelaud, D. et al. Stable overexpression of Smad7 in human melanoma cells inhibits their tumorigenicity in vitro and in vivo. Oncogene24, 7624–7629 (2005). CASPubMed Google Scholar
Juhasz, I. et al. Growth and invasion of human melanomas in human skin grafted to immunodeficient mice. Am. J. Pathol.143, 528–537 (1993). CASPubMedPubMed Central Google Scholar
Adkins, H.B. et al. Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo. J. Clin. Invest.112, 575–587 (2003). CASPubMedPubMed Central Google Scholar
Reya, T., Morrison, S.J., Clarke, M.F. & Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001). CAS Google Scholar
Fang, D. et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res.65, 9328–9337 (2005). CASPubMed Google Scholar
Hendrix, M.J. et al. Transendothelial function of human metastatic melanoma cells: role of the microenvironment in cell-fate determination. Cancer Res.62, 665–668 (2002). CASPubMed Google Scholar
Welch, D.R. et al. Characterization of a highly invasive and spontaneously metastatic human malignant melanoma cell line. Int. J. Cancer47, 227–237 (1991). CASPubMed Google Scholar
Seftor, E.A. et al. Expression of multiple molecular phenotypes by aggressive melanoma tumor cells: role in vasculogenic mimicry. Crit. Rev. Oncol. Hematol.44, 17–27 (2002). PubMed Google Scholar
Solnica-Krezel, L., Schier, A.F. & Driever, W. Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics136, 1401–1420 (1994). CASPubMedPubMed Central Google Scholar
Thisse, C., Thisse, B., Schilling, T.F. & Postlethwait, J.H. Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development119, 1203–1215 (1993). CASPubMed Google Scholar
Hess, A.R. et al. Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Res.61, 3250–3255 (2001). CASPubMed Google Scholar
Hendrix, M.J., Seftor, E.A., Seftor, R.E. & Fidler, I.J. A simple quantitative assay for studying the invasive potential of high and low human metastatic variants. Cancer Lett.38, 137–147 (1987). CASPubMed Google Scholar
Maniotis, A.J. et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am. J. Pathol.155, 739–752 (1999). CASPubMedPubMed Central Google Scholar