Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production (original) (raw)

References

  1. Hill, J.O. & Peters, J.C. Environmental contributions to obesity epidemic. Science 280, 1371–1374 (1998).
    Article CAS Google Scholar
  2. Kopelman, P.G. & Hitman, G.A. Diabetes. Exploding type II. Lancet 352 (suppl. 4), SIV5 (1998).
  3. Woods, S.C., Lotter, E.C., McKay, D.L. & Porte, D., Jr. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature. 282, 503–505 (1979).
    Article CAS Google Scholar
  4. Bruning, J.C. et al. Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122–2125 (2000).
    Article CAS Google Scholar
  5. Friedman, J.M. Obesity in the new millennium. Nature 404, 632–634 (2000).
    Article CAS Google Scholar
  6. Air, E.L. et al. Small molecule insulin mimetics reduce food intake and body weight and prevent development of obesity. Nat. Med. 8, 179–183 (2002).
    Article CAS Google Scholar
  7. Schwartz, M.W., Woods, S.C., Porte, D. Jr., Seeley, R.J. & Baskin, D.G. Central nervous system control of food intake. Nature 404, 661–671 (2000).
    Article CAS Google Scholar
  8. Ahima, R.S. et al. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252 (1996).
    Article CAS Google Scholar
  9. Wang, J., Liu, R., Hawkins, M., Barzilai, N. & Rossetti, L. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 393, 684–688 (1998).
    Article CAS Google Scholar
  10. Loftus, T.M. et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288, 2379–2381 (2000).
    Article CAS Google Scholar
  11. Obici, S. et al. Central administration of oleic acid inhibits glucose production and food intake. Diabetes 51, 271–275 (2002).
    Article CAS Google Scholar
  12. Makimura, H. et al. Cerulenin mimics effects of leptin on metabolic rate, food intake, and body weight independent of the melanocortin system, but unlike leptin, cerulenin fails to block neuroendocrine effects of fasting. Diabetes 50, 733–739 (2001).
    Article CAS Google Scholar
  13. Shimokawa, T., Kumar, M.V. & Lane, M.D. Effect of a fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides. Proc. Natl. Acad. Sci. USA 99, 66–71 (2002).
    Article CAS Google Scholar
  14. McGarry, G.D., Mannaert, G.P. & Foster, D.W. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J. Clin. Invest. 60, 265–270 (1977).
    Article CAS Google Scholar
  15. Zammit, V.A. Regulation of ketone body metabolism. A cellular perspective. Diabetes Rev. 2, 132–155 (1994).
    Google Scholar
  16. Obici, S. et al. Central melanocortin receptors regulate insulin action. J. Clin. Invest. 108, 1079–1085 (2001).
    Article CAS Google Scholar
  17. Liu, L. et al. Intracerebroventricular (ICV) leptin regulates hepatic but not peripheral glucose fluxes. J. Biol. Chem. 273, 31160–31167 (1998).
    Article CAS Google Scholar
  18. Miller, J.C., Gnaedinger, J.M. & Rapaport, S.I. Utilization of plasma fatty acid in rat brain: distribution of [14C]palmitate between oxidative and synthetic pathways. J. Neurochem. 49, 1507–1514 (1987).
    Article CAS Google Scholar
  19. Goto M. & Spitzer J.J. Fatty acids profiles of various lipids in the cerebrospinal fluid. Proc. Exp. Biol. Med. 136, 1294–1296 (1971).
    Article CAS Google Scholar
  20. Briscoe, C.P. et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J. Biol. Chem. 278, 11303–11311 (2003).
    Article CAS Google Scholar
  21. Lunzer, M.A., Manning, J.A. & Ockner, R.K. Inhibition of rat liver acetyl coenzyme A carboxylase by long chain acyl coenzyme A and fatty acid. J. Biol. Chem. 252, 5483–5487 (1977).
    CAS PubMed Google Scholar
  22. Brun, T., Assimacopoulos-Jeannet, F., Corkey, B.E. & Prentki, M. Long-chain fatty acids inhibit acetyl-CoA carboxylase gene expression in the pancreatic beta-cell line INS-1. Diabetes 46, 393–400 (1997).
    Article CAS Google Scholar
  23. Blazquez, C., Sanchez, C., Daza, A., Galve-Roperh, I. & Guzman, M. The stimulation of ketogenesis by cannabinoids in cultured astrocytes defines carnitine palmitoyltransferase I as a new ceramide-activated enzyme. J. Neurochem. 72, 1759–1768 (1999).
    Article CAS Google Scholar
  24. Di Marzo, V. et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410, 822–825 (2001).
    Article CAS Google Scholar
  25. Esser, V., Britton, C.H., Weis, B.C., Foster, D.W. & McGarry, J.D. Cloning, sequencing, and expression of a cDNA encoding rat liver carnitine palmitoyltransferase I. Direct evidence that a single polypeptide is involved in inhibitor interaction and catalytic function. J. Biol. Chem. 268, 5817–5822 (1993).
    CAS PubMed Google Scholar
  26. Birikh, K.R., Heaton, P.A. & Eckstein, F. The structure, function and application of the hammerhead ribozyme. Eur. J. Biochem. 245, 1–16 (1997).
    Article CAS Google Scholar
  27. Boussif, O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92, 7297–7301 (1995).
    Article CAS Google Scholar
  28. Goula, D. et al. Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Ther. 5, 712–717 (1998).
    Article CAS Google Scholar
  29. Palkovits M. Isolated removal of hypothalamic or other brain nuclei of the rat. Brain Res. 59, 449–450 (1973).
    Article CAS Google Scholar
  30. Obici, S., Feng, Z., Karkanias, G., Baskin, D.G. & Rossetti, L. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat. Neurosci. 5, 566–572 (2002).
    Article CAS Google Scholar
  31. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates 3rd edn. (Academic Press, 1997).
    Google Scholar
  32. Arduini, A. et al. Evidence for the involvement of carnitine-dependent long-chain acyltransferases in neuronal triglyceride and phospholipid fatty acid turnover. J. Neurochem. 62, 1530–1538 (1994).
    Article CAS Google Scholar
  33. Woldegiorgis, G., Spennetta, T., Corkey, B.E., Williamson, J.R. & Shrago, E. Extraction of tissue long-chain acyl-CoA esters and measurement by reverse-phase high-performance liquid chromatography. Anal. Biochem. 150, 8–12 (1985).
    Article CAS Google Scholar

Download references