Adenosine receptors as therapeutic targets (original) (raw)
Fredholm, B. B., IJzerman, A. P., Jacobson, K. A., Klotz, K. N. & Linden, J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev.53, 527–552 (2001). A publication on AR nomenclature, structure, function and regulation by members of NC-IUPHAR subcommittee. CASPubMed Google Scholar
Linden, J. Adenosine in tissue protection and tissue regeneration. Mol. Pharmacol.67, 1385–1387 (2005). Summarizes four modes of adenosine's tissue protective action. ArticleCASPubMed Google Scholar
McGaraughty, S., Cowart, M., Jarvis, M. F. & Berman, R. F. Anticonvulsant and antinociceptive actions of novel adenosine kinase inhibitors. Curr. Top. Med. Chem.5, 43–58 (2005). ArticleCASPubMed Google Scholar
Zimmermann, H. Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch. Pharmacol.362, 299–309 (2000). ArticleCASPubMed Google Scholar
Pascual, O. et al. Astrocytic purinergic signalling coordinates synaptic networks. Science310, 113–116 (2005). ArticleCASPubMed Google Scholar
Parkinson, F. E., Xiong, W. & Zamzow, C. R. Astrocytes and neurons: different roles in regulating adenosine levels. Neurol. Res.27, 153–160 (2005). ArticleCASPubMed Google Scholar
Gao, Z. G., Kim, S. K., IJzerman, A. P. & Jacobson, K. A. Allosteric modulation of the adenosine family of receptors. Mini Rev. Med. Chem.5, 545–553 (2005). ArticleCASPubMedPubMed Central Google Scholar
van Calker, D., Muller, M. & Hamprecht, B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J. Neurochem.33, 999–1005 (1979). ArticleCASPubMed Google Scholar
Londos, C., Cooper, D. M. & Wolff, J. Subclasses of external adenosine receptors. Proc. Natl Acad. Sci. USA77, 2551–2554 (1980). ArticleCASPubMed Google Scholar
Tawfik, H. E., Schnermann, J., Oldenburg, P. J. & Mustafa, S. J. Role of A1 adenosine receptors in the regulation of vascular tone. Am. J. Physiol. Heart Circ. Physiol.288, H1411–H1416 (2005). ArticleCASPubMed Google Scholar
Rogel, A., Bromberg, Y., Sperling, O. & Zoref-Shani, E. Phospholipase C is involved in the adenosine-activated signal transduction pathway conferring protection against iodoacetic acid-induced injury in primary rat neuronal cultures. Neurosci. Lett.373, 218–221 (2005). ArticleCASPubMed Google Scholar
Belardinelli, L., Shryock, J. C., Song, Y., Wang, D. & Srinivas, M. Ionic basis of the electrophysiological actions of adenosine on cardiomyocytes. FASEB J.9, 359–365 (1995). ArticleCASPubMed Google Scholar
Reid, E. A. et al. In vivo adenosine receptor preconditioning reduces myocardial infarct size via subcellular ERK signalling. Am. J. Physiol. Heart Circ. Physiol.288, H2253–H2259 (2005). ArticleCASPubMed Google Scholar
Kull, B., Svenningsson, P. & Fredholm, B. B. Adenosine A2A receptors are colocalized with and activate Golf in rat striatum. Mol. Pharmacol.58, 771–777 (2000). ArticleCASPubMed Google Scholar
Fresco, P., Diniz, C. & Goncalves, J. Facilitation of noradrenaline release by activation of adenosine A2A receptors triggers both phospholipase C and adenylate cyclase pathways in rat tail artery. Cardiovasc. Res.63, 739–746 (2004). ArticleCASPubMed Google Scholar
Offermanns, S. & Simon, M. I. Gα 15 and Gα 16 couple a wide variety of receptors to phospholipase C. J. Biol. Chem.270, 15175–15180 (1995). ArticleCASPubMed Google Scholar
Daly, J. W., Butts-Lamb, P. & Padgett, W. Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines. Cell. Mol. Neurobiol.3, 69–80 (1983). ArticleCASPubMed Google Scholar
Brackett, L. E. & Daly, J. W. Functional characterization of the A2B adenosine receptor in NIH 3T3 fibroblasts. Biochem. Pharmacol.47, 801–814 (1994). ArticleCASPubMed Google Scholar
Peakman, M. C. & Hill, S. J. Adenosine A2B-receptor-mediated cyclic AMP accumulation in primary rat astrocytes. Br. J. Pharmacol.111, 191–198 (1994). ArticleCASPubMedPubMed Central Google Scholar
Feoktistov, I. & Biaggioni, I. Adenosine A2B receptors evoke interleukin-8 secretion in human mast cells. An enprofylline-sensitive mechanism with implications for asthma. J. Clin. Invest.96, 1979–1986 (1995). ArticleCASPubMedPubMed Central Google Scholar
Gao, Z., Chen, T., Weber, M. J. & Linden, J. A2B adenosine and P2Y2 receptors stimulate mitogen-activated protein kinase in human embryonic kidney-293 cells. Cross-talk between cyclic AMP and protein kinase C pathways. J. Biol. Chem.274, 5972–5980 (1999). ArticleCASPubMed Google Scholar
Linden, J., Thai, T., Figler, H., Jin, X. & Robeva, A. S. Characterization of human A2B adenosine receptors: radioligand binding, western blotting, and coupling to Gq in human embryonic kidney 293 cells and HMC-1 mast cells. Mol. Pharmacol.56, 705–713 (1999). CASPubMed Google Scholar
Donoso, M. V., Lopez, R., Miranda, R., Briones, R. & Huidobro-Toro, J. P. A2B adenosine receptor mediates human chorionic vasoconstriction and signals through the arachidonic acid cascade. Am. J. Physiol. Heart Circ. Physiol.288, H2439–H2449 (2005). ArticleCASPubMed Google Scholar
Zhou, Q. Y. et al. Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc. Natl Acad. Sci. USA89, 7432–7436 (1992). ArticleCASPubMed Google Scholar
Abbracchio, M. P. et al. G protein-dependent activation of phospholipase C by adenosine A3 receptors in rat brain. Mol. Pharmacol.48, 1038–1045 (1995). CASPubMed Google Scholar
Shneyvays, V. et al. Role of adenosine A1 and A3 receptors in regulation of cardiomyocyte homeostasis after mitochondrial respiratory chain injury. Am. J. Physiol. Heart Circ. Physiol.288, H2792–H2801 (2005). ArticleCASPubMedPubMed Central Google Scholar
Englert, M., Quitterer, U. & Klotz, K. N. Effector coupling of stably transfected human A3 adenosine receptors in CHO cells. Biochem. Pharmacol.64, 61–65 (2002). ArticleCASPubMed Google Scholar
Fossetta, J. et al. Pharmacological analysis of calcium responses mediated by the human A3 adenosine receptor in monocyte-derived dendritic cells and recombinant cells. Mol. Pharmacol.63, 342–350 (2003). ArticleCASPubMed Google Scholar
Shneyvays, V., Zinman, T. & Shainberg, A. Analysis of calcium responses mediated by the A3 adenosine receptor in cultured newborn rat cardiac myocytes. Cell Calcium36, 387–396 (2004). ArticleCASPubMed Google Scholar
Tracey, W. R., Magee, W., Masamune, H., Oleynek, J. J. & Hill, R. J. Selective activation of adenosine A3 receptors with _N_6-(3-chlorobenzyl)-5′-_N_-methylcarbox-amidoadenosine (CB-MECA) provides cardioprotection via KATP channel activation. Cardiovasc. Res.40, 138–145 (1998). ArticleCASPubMed Google Scholar
Mozzicato, S., Joshi, B. V., Jacobson, K. A. & Liang, B. T. Role of direct RhoA-phospholipase D1 interaction in mediating adenosine-induced protection from cardiac ischemia. FASEB J.18, 406–408 (2004). ArticleCASPubMed Google Scholar
Fishman, P. et al. Evidence for involvement of Wnt signalling pathway in IB-MECA mediated suppression of melanoma cells. Oncogene21, 4060–4064 (2002). ArticleCASPubMed Google Scholar
Schulte, G. & Fredholm, B. B. Signalling pathway from the human adenosine A3 receptor expressed in Chinese hamster ovary cells to the extracellular signal-regulated kinase 1/2. Mol. Pharmacol.62, 1137–1146 (2002). ArticleCASPubMed Google Scholar
Schulte, G. & Fredholm, B. B. Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal.15, 813–827 (2003). Reports that each of the four ARs can activate one or more of the MAPKs by substantially different mechanisms. ArticleCASPubMed Google Scholar
Merighi, S. et al. A3 adenosine receptor activation inhibits cell proliferation via phosphatidylinositol 3-kinase (PI3K)/AKT-dependent inhibition of the extracellular signal-regulated kinase (ERK)1/2 phosphorylation in A375 human melanoma cells. J. Biol. Chem.280, 19516–19526 (2005). ArticleCASPubMed Google Scholar
Olah, M. E. & Stiles, G. L. The role of receptor structure in determining adenosine receptor activity. Pharmacol. Ther.85, 55–75 (2000). ArticleCASPubMed Google Scholar
Yan, L., Burbiel, J. C., Maass, A. & Müller, C. E. Adenosine receptor agonists: from basic medicinal chemistry to clinical development. Expert Opin. Emerging Drugs8, 537–576 (2003). ArticleCAS Google Scholar
Kim, S. K. et al. Modelling the adenosine receptors: Comparison of binding domains of A2A agonist and antagonist. J. Med. Chem.46, 4847–4859 (2003). ArticleCASPubMed Google Scholar
Tchilibon, S. et al. (N)-Methanocarba-2,_N_6-disubstituted adenine nucleosides as highly potent and selective A3 adenosine receptor agonists. J. Med. Chem.48, 1745–1758 (2005). ArticleCASPubMedPubMed Central Google Scholar
Moro, S., Gao, Z. G., Jacobson, K. A. & Spalluto, G. Progress in pursuit of therapeutic adenosine receptor antagonists. Med. Res. Rev.26, 131–159 (2006). Summary of the most recent progress in developing new therapeutic AR antagonists. ArticleCASPubMed Google Scholar
Moro, S., Bacillieri, M., Cacciari, B. & Spalluto, G. Autocorrelation of molecular electrostatic potential surface properties combined with partial least squares analysis as new strategy for the prediction of the activity of human A3 adenosine receptor antagonists. J. Med. Chem.48, 5698–5704 (2005). ArticleCASPubMed Google Scholar
Gao, Z. G. et al. Structural determinants of A3 adenosine receptor activation: Nucleoside ligands at the agonist/antagonist boundary. J. Med. Chem.45, 4471–4484 (2002). ArticleCASPubMed Google Scholar
Gao, Z. G., Blaustein, J., Gross, A. S., Melman, N. & Jacobson, K. A. _N_6–Substituted adenosine derivatives: selectivity, efficacy, and species differences at A3 adenosine receptors, Biochem. Pharmacol.65, 1675–1684 (2003). ArticleCASPubMedPubMed Central Google Scholar
Martin, P. L., Wysocki, R. J. Jr, Barrett, R. J., May, J. M. & Linden, J. Characterization of 8-(_N_-methylisopropyl)amino-_N_6-(5′-endohydroxy- endonorbornyl)-9-methyladenine (WRC-0571), a highly potent and selective, non-xanthine antagonist of A1 adenosine receptors. J. Pharmacol. Exp. Ther.276, 490–499 (1996). CASPubMed Google Scholar
Rieger, J. M., Brown, M. L., Sullivan, G. W., Linden, J. & MacDonald, T. L. Design, synthesis, and evaluation of novel adenosine A2A receptor agonists. J. Med. Chem.44, 531–539 (2001). ArticleCASPubMed Google Scholar
Bridges, A. J. et al. _N_6-[2-(3, 5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine and its uronamide derivatives. Novel adenosine agonists with both high affinity and high selectivity for the adenosine A2 receptor. J. Med. Chem.31, 1282–1285 (1988). ArticleCASPubMed Google Scholar
Palmer, T. M., Poucher, S. M., Jacobson, K. A. & Stiles, G. L. 125I-4-(2-[7-Amino-2-{furyl}{1,2,4}tri-azolo{2,3-a}{1,3,5}triazin-5-ylaminoethyl)phenol (125I-ZM241385), a high affinity antagonist radioligand selective for the A2A adenosine receptor. _Mol. Pharmacol._ **48**, 970–974 (1996). Google Scholar
Baraldi, P. G. et al. Design, synthesis, and biological evaluation of a second generation of pyrazolo[4,3-e]1, 2,4-triazolo[1,5-c]pyrimidines as potent and selective A2A adenosine receptor antagonists. J. Med. Chem.41, 2126–2133 (1998). ArticleCASPubMed Google Scholar
Ji, X. D. & Jacobson, K. A. [3H]-ZM241385 as a radioligand at recombinant human A2B adenosine receptors. Drug Des. Discov.16, 217–226 (1999). CASPubMedPubMed Central Google Scholar
Kase, H. et al. Progress in pursuit of therapeutic A2A antagonists: the adenosine A2A receptor selective antagonist KW6002: research and development toward a novel nondopaminergic therapy for Parkinson's disease. Neurology61, S97–S100 (2003). ArticleCASPubMed Google Scholar
Volpini, R., Costanzi, S., Vittori, S., Cristalli, G. & Klotz, K. N. Medicinal chemistry and pharmacology of A2B adenosine receptors. Curr. Top. Med. Chem.3, 427–443 (2003). ArticleCASPubMed Google Scholar
Beukers, M. W. et al. New, non-adenosine, high-potency agonists for the human adenosine A2B receptor with an improved selectivity profile compared to the reference agonist N-ethylcarboxamido-adenosine. J. Med. Chem.47, 3707–3709 (2004). The first report of non-nucleoside agonists for the human A2BAR, with one of those compounds showing potency of about 10 nM. ArticleCASPubMed Google Scholar
Ji, X., Kim, Y. C., Ahern, D. G., Linden, J. & Jacobson, K. A. [3H]MRS 1754, a selective antagonist radioligand for A2B adenosine receptors. Biochem. Pharmacol.61, 657–663 (2001). ArticleCASPubMedPubMed Central Google Scholar
Gessi, S. et al. Expression, pharmacological profile, and functional coupling of A2B receptors in a recombinant system and in peripheral blood cells using a novel selective antagonist radioligand, [3H]MRE 2029-F20. Mol. Pharmacol.67, 2137–2147 (2005). ArticleCASPubMed Google Scholar
Stewart, M. et al. [3H]OSIP339391, a selective, novel, and high affinity antagonist radioligand for adenosine A2B receptors. Biochem. Pharmacol.68, 305–312 (2004). ArticleCASPubMed Google Scholar
Olah, M. E., Gallo-Rodriguez, C., Jacobson, K. A. & Stiles, G. L. 125I-4-Aminobenzyl-5′-N-methylcarboxamidoadenosine, a high affinity radioligand for the rat A3 adenosine receptor. Mol. Pharmacol.45, 978–982 (1994). CASPubMedPubMed Central Google Scholar
Jeong, L. S. et al. _N_6–Substituted D-4′-thioadenosine-5′-methyluronamides: potent and selective agonists at the human A3 adenosine receptor. J. Med. Chem.46, 3775–3777 (2003). ArticleCASPubMed Google Scholar
Linden, J. Cloned adenosine A3 receptors: pharmacological properties, species differences and receptor functions. Trends Pharmacol. Sci.15, 298–306 (1994). ArticleCASPubMed Google Scholar
Yang, H. et al. The cross-species A3 adenosine-receptor antagonist MRS 1292 inhibits adenosine-triggered human nonpigmented ciliary epithelial cell fluid release and reduces mouse intraocular pressure. Curr. Eye Res.30, 747–754 (2005). Application of the first rationally designed, cross-species, nucleoside antagonist in an animal model for antiglaucoma effects. ArticleCASPubMedPubMed Central Google Scholar
Müller, C. E., Diekmann, M., Thorand, M. & Ozola, V. [3H]8-Ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]-purin-5-one ([3H]PSB-11), a novel high-affinity antagonist radioligand for human A3 adenosine receptors. Bioorg. Med. Chem. Lett.12, 501–503 (2002). ArticlePubMed Google Scholar
Perreira, M. et al. 'Reversine' and its 2-substituted adenine derivatives as potent and selective A3 adenosine receptor antagonists. J. Med. Chem.48, 4910–4918 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zablocki, J. A., Wu, L., Shryock, J. & Belardinelli, L. Partial A1 adenosine receptor agonists from a molecular perspective and their potential use as chronic ventricular rate control agents during atrial fibrillation (AF). Curr. Top. Med. Chem.4, 839–854 (2004). ArticleCASPubMed Google Scholar
Fraser, H., Gao, Z., Ozeck, M. J. & Belardinelli, L. N-[3-(R)-tetrahydrofuranyl]-6-aminopurine riboside, an A1 adenosine receptor agonist, antagonizes catecholamine-induced lipolysis without cardiovascular effects in awake rats. J. Pharmacol. Exp. Ther.305, 225–231 (2003). ArticleCASPubMed Google Scholar
Bayes, M., Rabasseda, X. & Prous, J. R. Gateways to clinical trials. Methods Find. Exp. Clin. Pharmacol.25, 831–855 (2003). CASPubMed Google Scholar
Ellenbogen, K. A. et al. Trial to evaluate the management of paroxysmal supraventricular tachycardia during an electrophysiology study with tecadenoson. Circulation111, 3202–3208 (2005). Reports that the A1AR agonist, Tecadenoson, terminates paroxysmal supraventricular tachycardia without the clinically significant side effects caused by stimulation of other ARs. ArticleCASPubMed Google Scholar
Wagner, H. et al. General pharmacology of SDZ WAG-994, a potent selective and orally-active adenosine A1 receptor agonist. Drug Dev. Res.34, 276–288 (1995). ArticleCAS Google Scholar
Auchampach, J. A. et al. Selective activation of A3 adenosine receptors with _N_6-(3-iodobenzyl) adenosine-5′-_N_-methyluronamide protects against myocardial stunning and infarction without hemodynamic changes in conscious rabbits. Circ. Res.80, 800–809 (1997). ArticleCASPubMed Google Scholar
Schindler, C. W. et al. Role of central and peripheral adenosine receptors in the cardiovascular responses to intraperitoneal injections of adenosine A1 and A2A subtype receptor agonists. Br. J. Pharmacol.144, 642–650 (2005). ArticleCASPubMedPubMed Central Google Scholar
Schulte, G. et al. Adenosine A1 receptors are necessary for protection of the murine heart by remote, delayed adaptation to ischaemia. Acta Physiol. Scand.182, 133–143 (2004). ArticleCASPubMed Google Scholar
Matherne, G. P., Linden, J., Byford, A. M., Gauthier, N. S. & Headrick, J. P. Transgenic A1 adenosine receptor overexpression increases myocardial resistance to ischemia. Proc. Natl Acad. Sci. USA94, 6541–6546 (1997). ArticleCASPubMed Google Scholar
Gauthier, N. S., Headrick, J. P. & Matherne, G. P. Myocardial function in the working mouse heart overexpressing cardiac A1 adenosine receptors. J. Mol. Cell. Cardiol.30, 187–193 (1998). ArticleCASPubMed Google Scholar
Yang, Z. et al. Cardiac overexpression of A1-adenosine receptor protects intact mice against myocardial infarction. Am. J. Physiol. Heart Circ. Physiol.282, H949–H955 (2002). ArticleCASPubMed Google Scholar
Headrick, J. P., Gauthier, N. S., Morrison, R. & Matherne, G. P. Cardioprotection by K(ATP) channels in wild-type hearts and hearts overexpressing A1-adenosine receptors. Am. J. Physiol. Heart Circ. Physiol.279, H1690–H1697 (2000). ArticleCASPubMed Google Scholar
Cerniway, R. J., Yang, Z., Jacobson, M. A., Linden, J. & Matherne, G. P. Targeted deletion of A3 adenosine receptors improves tolerance to ischemia-reperfusion injury in mouse myocardium. Am. J. Physiol. Heart Circ. Physiol.281, H1751–H1758 (2001). ArticleCASPubMed Google Scholar
Joosen, M. J., Bueters, T. J. & van Helden, H. P. Cardiovascular effects of the adenosine A1 receptor agonist _N_6-cyclopentyladenosine (CPA) decisive for its therapeutic efficacy in sarin poisoning. Arch. Toxicol.78, 34–39 (2004). ArticleCASPubMed Google Scholar
Reichelt, M. E. et al. Genetic deletion of the A1 adenosine receptor limits myocardial ischemic tolerance. Circ. Res.96, 363–367 (2005). ArticleCASPubMed Google Scholar
Tracey, W. R. et al. Novel _N_6-substituted adenosine 5′-_N_-methyluronamides with high selectivity for human adenosine A3 receptors reduce ischemic myocardial injury. Am. J. Physiol. Heart Circ. Physiol.285, H2780–H2787 (2003). ArticleCASPubMed Google Scholar
Cross, H. R., Murphy, E., Black, R. G., Auchampach, J. & Steenbergen, C. Overexpression of A3 adenosine receptors decreases heart rate, preserves energetics, and protects ischemic hearts. Am. J. Physiol. Heart Circ. Physiol.283, H1562–H1568 (2002). ArticleCASPubMedPubMed Central Google Scholar
Black, R. G. et al. Gene dosage-dependent effects of cardiac-specific overexpression of the A3 adenosine receptor. Circ. Res.91, 165–172 (2002). ArticleCASPubMedPubMed Central Google Scholar
Guo, Y. et al. Targeted deletion of the A3 adenosine receptor confers resistance to myocardial ischemic injury and does not prevent early preconditioning. J. Mol. Cell Cardiol.33, 825–830 (2001). ArticleCASPubMedPubMed Central Google Scholar
Harrison, G. J. et al. Effects of A3 adenosine receptor activation and gene knock-out in ischemic-reperfused mouse heart. Cardiovasc. Res.53, 147–155 (2002). ArticleCASPubMed Google Scholar
Yang, Z. et al. Infarct sparing effect of A2A-adenosine receptor activation is due primarily to its actions on lymphocytes. Circulation111, 2190–2197 (2005). ArticleCASPubMed Google Scholar
Gerlai, R. Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci.19, 177–181 (1996). ArticleCASPubMed Google Scholar
De Jonge, R., Out, M., Maas, W. J. & De Jong, J. W. Preconditioning of rat hearts by adenosine A1 or A3 receptor activation. Eur. J. Pharmacol.441, 165–172 (2002). ArticleCASPubMed Google Scholar
Wang, J. et al. Dual activation of adenosine A1 and A3 receptors mediates preconditioning of isolated cardiac myocytes. Eur. J. Pharmacol.320, 241–248 (1997). ArticleCASPubMed Google Scholar
Shneyvays, V., Mamedova, L., Zinman, T., Jacobson, K. A. & Shainberg, A. Activation of A3 adenosine receptor protects against doxorubicin-induced cardiotoxicity. J. Mol. Cell. Cardiol.33, 1249–1261 (2001). ArticleCASPubMed Google Scholar
Varani, K. et al. Dose and time effects of caffeine intake on human platelet adenosine A2A receptors: functional and biochemical aspects. Circulation102, 285–289 (2000). ArticleCASPubMed Google Scholar
Hendel, R.C. et al. Initial clinical experience with regadenoson, a novel selective A2A agonist for pharmacologic stress single-photon emission computed tomography myocardial perfusion imaging. J. Am. Coll. Cardiol.46, 2069–2075 (2005). ArticleCASPubMed Google Scholar
Barrett, R. J., Lamson, M. J., Johnson, J. & Smith, W. B. Pharmacokinetics and safety of binodenoson after intravenous dose escalation in healthy volunteers. J. Nucl. Cardiol.12, 166–171 (2005). ArticlePubMed Google Scholar
Rubino, A., Ralevic, V. & Burnstock, G. The P1-purinoceptors that mediate the prejunctional inhibitory effect of adenosine on capsaicin-sensitive nonadrenergic noncholinergic neurotransmission in the rat mesenteric arterial bed are of the A1 subtype. J. Pharmacol. Exp. Ther.267, 1100–1104 (1993). CASPubMed Google Scholar
Szentmiklosi, A. J. et al. Adenosine receptors mediate both contractile and relaxant effects of adenosine in main pulmonary artery of guinea pigs. Naunyn. SchmiedebergsArch. Pharmacol.351, 417–425 (1995). ArticleCAS Google Scholar
Eltzschig, H. K. et al. Coordinated adenine nucleotide phosphohydrolysis and nucleoside signalling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J. Exp. Med.198, 783–796 (2003). ArticleCASPubMedPubMed Central Google Scholar
Dubey, R. K., Gillespie, D. G., Shue, H. & Jackson, E. K. A2B receptors mediate antimitogenesis in vascular smooth muscle cells. Hypertension35, 267–272 (2000). ArticleCASPubMed Google Scholar
Chen, Y. et al. Functional effects of enhancing or silencing adenosine A2B receptors in cardiac fibroblasts. Am. J. Physiol. Heart Circ. Physiol.287, H2478–H2486 (2004). ArticleCASPubMed Google Scholar
Matheson, P. J., Spain, D. A., Harris, P. D., Garrison, R. N. & Wilson, M. A. Glucose and glutamine gavage increase portal vein nitric oxide metabolite levels via adenosine A2B activation. J. Surg. Res.84, 57–63 (1999). ArticleCASPubMed Google Scholar
Feoktistov, I. et al. Hypoxia modulates adenosine receptors in human endothelial and smooth muscle cells toward an A2B angiogenic phenotype. Hypertension44, 649–654 (2004). Description of the angiogenic role of the A2BAR under hypoxic conditions. ArticleCASPubMed Google Scholar
Tilley, S. L., Wagoner, V. A., Salvatore, C. A., Jacobson, M. A. & Koller, B. H. Adenosine and inosine increase cutaneous vasopermeability by activating A3 receptors on mast cells. J. Clin. Invest.105, 361–367 (2000). ArticleCASPubMedPubMed Central Google Scholar
Zhao, Z., Makaritsis, K., Francis, C. E., Gavras, H. & Ravid, K. A role for the A3 adenosine receptor in determining tissue levels of cAMP and blood pressure: studies in knock-out mice. Biochim. Biophys. Acta1500, 280–290 (2000). ArticleCASPubMed Google Scholar
Talukder, M. A. et al. Targeted deletion of adenosine A3 receptors augments adenosine-induced coronary flow in isolated mouse heart. Am. J. Physiol. Heart Circ. Physiol.282, H2183–H2189 (2002). ArticleCASPubMed Google Scholar
Jones, M. R. et al. A3 adenosine receptor deficiency does not influence atherogenesis. J. Cell Biochem.92, 1034–1043 (2004). ArticleCASPubMed Google Scholar
Solinas, M. et al. Involvement of adenosine A1 receptors in the discriminative-stimulus effects of caffeine in rats. Psychopharmacology (Berl.)179, 576–586 (2005). ArticleCAS Google Scholar
Ledent, C. et al. Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2A receptor. Nature388, 674–678 (1997). The first demonstration of A2AAR-mediated effects, such as pain, aggregation of platelets, hypertension and caffeine's stimulant effect, by using a receptor-knockout model. ArticleCAS Google Scholar
Fredholm, B. B., Chen, J. F., Masino, S. A. & Vaugeois, J. M. Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu. Rev. Pharmacol. Toxicol.45, 385–412 (2005). A thoughtful overview of the roles of ARs in CNS disorders. ArticleCASPubMed Google Scholar
Huang, Z. L. et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nature Neurosci.8, 858–859 (2005). The authors used both A1AR- and A2AAR-knockout mice to show that the A2AAR, not the A1AR, is crucial in caffeine-induced wakefulness. ArticleCASPubMed Google Scholar
Satoh, S., Matsumura, H. & Hayaishi, O. Involvement of adenosine A2A receptor in sleep promotion. Eur. J. Pharmacol.351, 155–162 (1998). ArticleCASPubMed Google Scholar
Maemoto, T. et al. Pharmacological characterization of FR194921, a new potent, selective, and orally active antagonist for central adenosine A1 receptors. J. Pharmacol. Sci.96, 42–52 (2004). ArticleCASPubMed Google Scholar
Sawynok, J. Adenosine receptor activation and nociception. Eur. J. Pharmacol.347, 1–11 (1998). ArticleCASPubMed Google Scholar
Johansson, B. et al. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc. Natl. Acad. Sci. USA98, 9407–9412 (2001). Initial study of A1AR-mediated CNS effect by using A1AR-knockout mice. ArticleCASPubMed Google Scholar
Wu, W. P. et al. Increased nociceptive response in mice lacking the adenosine A1 receptor. Pain113, 395–404 (2005). ArticleCASPubMed Google Scholar
Gordh, T., Karlsten, R. & Kristensen, J. Intervention with spinal NMDA, adenosine, and NO systems for pain modulation. Ann. Med.27, 229–234 (1995). ArticleCASPubMed Google Scholar
Giffin, N. J. et al. Effect of the adenosine A1 receptor agonist GR79236 on trigeminal nociception with blink reflex recordings in healthy human subjects. Cephalalgia23, 287–292 (2003). ArticleCASPubMed Google Scholar
Zambrowicz, B. P., Turner, C. A. & Sands, A. T. Predicting drug efficacy: knockouts model pipeline drugs of the pharmaceutical industry. Curr. Opin. Pharmacol.3, 563–570 (2003). ArticleCASPubMed Google Scholar
Li, X., Conklin, D., Pan, H. L. & Eisenach, J. C. Allosteric adenosine receptor modulation reduces hypersensitivity following peripheral inflammation by a central mechanism. J. Pharmacol. Exp. Ther.305, 950–955 (2003). ArticleCASPubMed Google Scholar
Ferre, S., von Euler, G., Johansson, B., Fredholm, B. B. & Fuxe, K. Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc. Natl Acad. Sci. USA88, 7238–7241 (1991). ArticleCASPubMed Google Scholar
Hillion, J. et al. Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J. Biol. Chem.277, 18091–18097 (2002). ArticleCASPubMed Google Scholar
Svenningsson, P., Le Moine, C., Fisone, G. & Fredholm, B. B. Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog. Neurobiol.59, 355–396 (1999). ArticleCASPubMed Google Scholar
Aoyama, S., Kase, H. & Borrelli, E. Rescue of locomotor impairment in dopamine D2 receptor-deficient mice by an adenosine A2A receptor antagonist. J. Neurosci.20, 5848–5852 (2000). ArticleCASPubMed Google Scholar
Xu, K., Bastia, E. & Schwarzschild, M. Therapeutic potential of adenosine A2A receptor antagonists in Parkinson's disease. Pharmacol. Ther.105, 267–310 (2005). ArticleCASPubMed Google Scholar
Ross, G. W. et al. Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA283, 2674–2679 (2000). ArticleCASPubMed Google Scholar
Ascherio, A. et al. Prospective study of caffeine consumption and risk of Parkinson's disease in men and women. Ann. Neurol.50, 56–63 (2001). ArticleCASPubMed Google Scholar
Bara-Jimenez, W. et al. Adenosine A2A receptor antagonist treatment of Parkinson's disease. Neurology61, 293–296 (2003). ArticleCASPubMed Google Scholar
Hauser, R. A., Hubble, J. P. & Truong, D. D. Randomized trial of the adenosine A2A receptor antagonist istradefylline in advanced PD. Neurology61, 297–303 (2003). ArticleCASPubMed Google Scholar
Weiss, S. M. et al. Discovery of nonxanthine adenosine A2A receptor antagonists for the treatment of Parkinson's disease. Neurology61, S101–S106 (2003). ArticleCASPubMed Google Scholar
Matasi, J. J. et al. The discovery and synthesis of novel adenosine receptor A2A antagonists. Bioorg. Med. Chem. Lett.15, 1333–1336 (2005). ArticleCASPubMed Google Scholar
Peng, H. et al. Novel bicyclic piperazine derivatives of triazolotriazine and triazolopyrimidines as highly potent and selective adenosine A2A receptor antagonists. J. Med. Chem.47, 6218–6229 (2004). ArticleCASPubMed Google Scholar
Chen, J. F. et al. A2A adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J. Neurosci.19, 9192–9200 (1999). Provides a genetic basis for treating PD with A2AAR antagonists. ArticleCASPubMed Google Scholar
Monopoli, A., Lozza, G., Forlani, A., Mattavelli, A. & Ongini, E. Blockade of adenosine A2A receptors by SCH 58261 results in neuroprotective effects in cerebral ischaemia in rats. Neuroreport9, 3955–3959 (1998). ArticleCASPubMed Google Scholar
Blum, D. et al. A dual role of adenosine A2A receptors in 3-nitropropionic acid-induced striatal lesions: implications for the neuroprotective potential of A2A antagonists. J. Neurosci.23, 5361–5369 (2003). ArticleCASPubMed Google Scholar
Yu, L. et al. Selective inactivation or reconstitution of adenosine A2A receptors in bone marrow cells reveals their significant contribution to the development of ischemic brain injury. Nature Med.10, 1081–1087 (2004). ArticleCASPubMed Google Scholar
Aden, U. et al. Aggravated brain damage after hypoxic ischemia in immature adenosine A2A knockout mice. Stroke34, 739–744 (2003). ArticleCASPubMed Google Scholar
Mayne, M. et al. Adenosine A2A receptor activation reduces proinflammatory events and decreases cell death following intracerebral hemorrhage. Ann. Neurol.49, 727–735 (2001). ArticleCASPubMed Google Scholar
Cassada, D. C. et al. Adenosine A2A agonist reduces paralysis after spinal cord ischemia: correlation with A2A receptor expression on motor neurons. Ann. Thorac. Surg.74, 846–849 (2002). ArticlePubMed Google Scholar
von Lubitz, D. K. J. E. et al. Postischemic administration of adenosine amine congener (ADAC): analysis of recovery in gerbils. Eur. J. Pharmacol.316, 171–179 (1996). ArticleCASPubMedPubMed Central Google Scholar
Knutsen, L. J. et al. N-substituted adenosines as novel neuroprotective A1 agonists with diminished hypotensive effects. J. Med. Chem.42, 3463–3477 (1999). ArticleCASPubMed Google Scholar
Olsson, T. et al. Deletion of the adenosine A1 receptor gene does not alter neuronal damage following ischaemia in vivo or in vitro. Eur. J. Neurosci.20, 1197–1204 (2004). ArticlePubMed Google Scholar
Turner, C. P. et al. A1 adenosine receptors mediate hypoxia-induced ventriculomegaly. Proc. Natl Acad. Sci. USA100, 11718–11722 (2003). ArticleCASPubMed Google Scholar
Stevens, B., Porta, S., Haak, L. L., Gallo, V. & Fields, R. D. Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron36, 855–868 (2002). ArticleCASPubMedPubMed Central Google Scholar
Linden, J. et al. Molecular cloning and functional expression of a sheep A3 adenosine receptor with widespread tissue distribution. Mol. Pharmacol.44, 524–532 (1993). CASPubMed Google Scholar
Dixon, A. K., Gubitz, A. K., Sirinathsinghji, D. J., Richardson, P. J. & Freeman, T. C. Tissue distribution of adenosine receptor mRNAs in the rat. Br. J. Pharmacol.118, 1461–1468 (1996). ArticleCASPubMedPubMed Central Google Scholar
Zhao, Z., Yaar, R., Ladd, D., Cataldo, L. M. & Ravid, K. Overexpression of A3 adenosine receptors in smooth, cardiac, and skeletal muscle is lethal to embryos. Microvasc. Res.63, 61–69 (2002). ArticleCASPubMed Google Scholar
Jacobson, K. A. et al. A role for central A3-adenosine receptors. Mediation of behavioral depressant effects. FEBS Lett.336, 57–60 (1993). ArticleCASPubMedPubMed Central Google Scholar
von Lubitz, D. K. J. E., Lin, R. C.-S., Popik, P., Carter, M. F. & Jacobson, K. A. Adenosine A3 receptor stimulation and cerebral ischemia. Eur. J. Pharmacol.263, 59–67 (1994). ArticleCASPubMedPubMed Central Google Scholar
Porkka-Heiskanen, T. et al. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science276, 1265–1268 (1997). Shows that adenosine is a physiological sleep factor that mediates the somnogenic effects of prior wakefulness. ArticleCASPubMedPubMed Central Google Scholar
Porkka-Heiskanen, T., Alanko, L., Kalinchuk, A. & Stenberg, D. Adenosine and sleep. Sleep Med. Rev.6, 321–332 (2002). ArticlePubMed Google Scholar
Stenberg, D. et al. Sleep and its homeostatic regulation in mice lacking the adenosine A1 receptor. J. Sleep Res.12, 283–290 (2003). ArticlePubMed Google Scholar
Urade, Y. et al. Sleep regulation in adenosine A2A receptor-deficient mice. Neurology61, S94–S96 (2003). ArticleCASPubMed Google Scholar
Basheer, R., Strecker, R. E., Thakkar, M. M. & McCarley, R. W. Adenosine and sleep-wake regulation. Prog. Neurobiol.73, 379–396 (2004). ArticleCASPubMed Google Scholar
Yao, L. et al. βγ dimers mediate synergy of dopamine D2 and adenosine A2 receptor-stimulated PKA signalling and regulate ethanol consumption. Cell109, 733–743 (2002). ArticleCASPubMed Google Scholar
Mailliard, W. S. & Diamond, I. Recent advances in the neurobiology of alcoholism: the role of adenosine. Pharmacol. Ther.101, 39–46 (2004). ArticleCASPubMed Google Scholar
Bauer, A. et al. 18F-CPFPX PET identifies changes in cerebral A1 adenosine receptor density caused by glioma invasion. J. Nucl. Med.46, 450–454 (2005). CASPubMed Google Scholar
Moresco, R. M. et al. In vivo imaging of adenosine A2A receptors in rat and primate brain using [11C]SCH442416. Eur. J. Nucl. Med. Mol. Imaging32, 405–413 (2005). ArticleCASPubMed Google Scholar
El Yacoubi, M. et al. Absence of the adenosine A2A receptor or its chronic blockade decrease ethanol withdrawal-induced seizures in mice. Neuropharmacology40, 424–432 (2001). ArticleCASPubMed Google Scholar
Lee, H. T. & Emala, C. W. Protective effects of renal ischemic preconditioning and adenosine pretreatment: role of A1 and A3 receptors. Am. J. Physiol. Renal Physiol.278, F380–F387 (2000). ArticleCASPubMed Google Scholar
Pingle, S. C. et al. Osmotic diuretics induce adenosine A1 receptor expression and protect renal proximal tubular epithelial cells against cisplatin-mediated apoptosis. J. Biol. Chem.279, 43157–43167 (2004). ArticleCASPubMed Google Scholar
Brown, R. et al. Abolished tubuloglomerular feedback and increased plasma renin in adenosine A1 receptor-deficient mice. Am. J. Physiol. Regul. Integr. Comp. Physiol.281, R1362–R1367 (2001). CASPubMed Google Scholar
Sun, D. et al. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine A1 receptors. Proc. Natl Acad. Sci. USA98, 9983–9988 (2001). ArticleCASPubMed Google Scholar
Lee, H. T., Xu, H., Nasr, S. H., Schnermann, J. & Emala, C. W. A1 adenosine receptor knockout mice exhibit increased renal injury following ischemia and reperfusion. Am. J. Physiol. Renal Physiol.286, F298–F306 (2004). ArticleCASPubMed Google Scholar
Wilcox, C. S., Welch, W. J., Schreiner, G. F. & Belardinelli, L. Natriuretic and diuretic actions of a highly selective adenosine A1 receptor antagonist. J. Am. Soc. Nephrol.10, 714–720 (1999). CASPubMed Google Scholar
Gottlieb, S. S. et al. BG9719 (CVT-124), an A1 adenosine receptor antagonist, protects against the decline in renal function observed with diuretic therapy. Circulation105, 1348–1353 (2002). ArticleCASPubMed Google Scholar
Auchampach, J. A. et al. Comparison of three different A1 adenosine receptor antagonists on infarct size and multiple cycle ischemic preconditioning in anesthetized dogs. J. Pharmacol. Exp. Ther.308, 846–856 (2004). ArticleCASPubMed Google Scholar
Day, Y. J. et al. Renal protection from ischemia mediated by A2A adenosine receptors on bone marrow-derived cells. J. Clin. Invest.112, 883–891 (2003). ArticleCASPubMedPubMed Central Google Scholar
Okusa, M. D. et al. A2A adenosine receptor-mediated inhibition of renal injury and neutrophil adhesion. Am. J. Physiol. Renal Physiol.279, F809–F818 (2000). ArticleCASPubMed Google Scholar
Zannikos, P. N. et al. Pharmacokinetics and safety of single intravenous infusions of the adenosine agonist, AMP 579, in patients with end-stage renal insufficiency. J. Clin. Pharmacol.40, 745–751 (2000). ArticleCASPubMed Google Scholar
Vitzthum, H., Weiss, B., Bachleitner, W., Kramer, B. K. & Kurtz, A. Gene expression of adenosine receptors along the nephron. Kidney Int.65, 1180–1190 (2004). ArticleCASPubMed Google Scholar
Cooper, J., Hill, S. J. & Alexander, S. P. An endogenous A2B adenosine receptor coupled to cyclic AMP generation in human embryonic kidney (HEK 293) cells. Br. J. Pharmacol.122, 546–550 (1997). ArticleCASPubMedPubMed Central Google Scholar
Dubey, R. K., Gillespie, D. G., Mi, Z. & Jackson, E. K. Adenosine inhibits PDGF-induced growth of human glomerular mesangial cells via A2B receptors. Hypertension46, 628–634 (2005). ArticleCASPubMed Google Scholar
Lee, H. T. et al. A3 adenosine receptor knockout mice are protected against ischemia- and myoglobinuria-induced renal failure. Am. J. Physiol. Renal Physiol.284, F267–F273 (2003). ArticleCASPubMed Google Scholar
Sun, C. X. et al. A protective role for the A1 adenosine receptor in adenosine-dependent pulmonary injury. J. Clin. Invest.115, 35–43 (2005). Uses A1AR- and adenosine deaminase-deficient mice to show the occurrence of anti-inflammatory actions of adenosine in the lung, mediated through A1ARs, on macrophages. ArticleCASPubMedPubMed Central Google Scholar
Holgate, S. T. The identification of the adenosine A2B receptor as a novel therapeutic target in asthma. Br. J. Pharmacol.145, 1009–1015 (2005). Comprehensive description of the role of the A2BAR in asthma, which provides a firm basis for developing A2BAR antagonists as a new therapeutic approach to this disease. ArticleCASPubMedPubMed Central Google Scholar
Salvatore, C. A. et al. Disruption of the A3 adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J. Biol. Chem.275, 4429–4434 (2000). ArticleCASPubMed Google Scholar
Feoktistov, I. & Biaggioni, I. Role of adenosine in asthma. Drug Dev. Res.39, 333–336 (1996). ArticleCASPubMed Google Scholar
Ryzhov, S. et al. Adenosine-activated mast cells induce IgE synthesis by B lymphocytes: an A2B-mediated process involving Th2 cytokines IL-4 and IL-13 with implications for asthma. J. Immunol.172, 7726–7733 (2004). ArticleCASPubMed Google Scholar
Auchampach, J. A., Jin, X., Wan, T. C., Caughey, G. H. & Linden, J. Canine mast cell adenosine receptors: cloning and expression of the A3 receptor and evidence that degranulation is mediated by the A2B receptor. Mol. Pharmacol.52, 846–860 (1997). ArticleCASPubMed Google Scholar
Press, N. J. et al. A new orally bioavailable dual adenosine A2B/A3 receptor antagonist with therapeutic potential. Bioorg. Med. Chem. Lett.15, 3081–3085 (2005). ArticleCASPubMed Google Scholar
Fozard, J. R., Ellis, K. M., Villela Dantas, M. F., Tigani, B. & Mazzoni, L. Effects of CGS 21680, a selective adenosine A2A receptor agonist, on allergic airways inflammation in the rat. Eur. J. Pharmacol.438, 183–188 (2002). ArticleCASPubMed Google Scholar
Glaxo Group Ltd: WO9967263, WO9967264, WO9967265 & WO9967266. Selective A2A receptor agonists as inhibitors of cellular activation. Expert Opin. Ther. Pat.10, 723–728 (2000).
Rivo, J., Zeira, E., Galun, E. & Matot, I. Activation of A3 adenosine receptor provides lung protection against ischemia-reperfusion injury associated with reduction in apoptosis. Am. J. Transplant.4, 1941–1948 (2004). ArticleCASPubMed Google Scholar
Sitkovsky, M. V. et al. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu. Rev. Immunol.22, 657–682 (2004). Comprehensive overview of the roles of A2AARs in immune response and inflammation-related tissue damage. ArticleCASPubMed Google Scholar
Erdmann, A. A. et al. Activation of Th1 and Tc1 cell adenosine A2A receptors directly inhibits IL-2 secretion in vitro and IL-2 driven expansion in vivo. Blood105, 4707–4714 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lappas, C. M., Rieger, J. M. & Linden, J. A2A adenosine receptor induction inhibits IFN- production in murine CD4+ T cells. J. Immunol.174, 1073–1080 (2005). ArticleCASPubMed Google Scholar
Ohta, A. & Sitkovsky, M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature414, 916–920 (2001). Describes that A2AARs are crucially involved in the limitation and termination of inflammation. No other mechanism for inflammation could compensate fully for the loss of A2AARs on immune cells. ArticleCASPubMed Google Scholar
Kirkpatrick, P. Putting the brake on inflammation. Nature Rev. Drug Disc.1, 99 (2002). ArticleCAS Google Scholar
Montesinos, M. C. et al. Adenosine A2A or A3 receptors are required for inhibition of inflammation by methotrexate and its analog MX-68. Arthritis Rheum.48, 240–247 (2003). ArticleCASPubMed Google Scholar
Day, Y. J. et al. Protection from ischemic liver injury by activation of A2A adenosine receptors during reperfusion: inhibition of chemokine induction. Am. J. Physiol. Gastrointest. Liver Physiol.286, G285–G293 (2004). ArticleCASPubMed Google Scholar
Sullivan, G. W., Fang, G., Linden, J. & Scheld, W. M. A2A adenosine receptor activation improves survival in mouse models of endotoxemia and sepsis. J. Infect. Dis.189, 1897–1904 (2004). ArticleCASPubMed Google Scholar
Odashima, M. et al. Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease. Gastroenterology129, 26–33 (2005). ArticleCASPubMed Google Scholar
Peirce, S. M., Skalak, T. C., Rieger, J. M., Macdonald, T. L. & Linden, J. Selective A2A adenosine receptor activation reduces skin pressure ulcer formation and inflammation. Am. J. Physiol. Heart Circ. Physiol.281, H67–H74 (2001). ArticleCASPubMed Google Scholar
Montesinos, M. C. et al. Wound healing is accelerated by agonists of adenosine A2 (Gαs-linked) receptors. J. Exp. Med.186, 1615–1620 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ramkumar, V., Stiles, G. L., Beaven, M. A. & Ali, H. The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J. Biol. Chem.268, 16887–16890 (1993). CASPubMed Google Scholar
Haskó, G. & Cronstein, B. N. Adenosine: an endogenous regulator of innate immunity. Trends Immunol.25, 33–39 (2004). Summary of adenosine's promotion of a self-limiting, healthy immune response in endothelial cells, neutrophils and mast cells. ArticleCASPubMed Google Scholar
Baharav, E. et al. Antiinflammatory effect of A3 adenosine receptor agonists in murine autoimmune arthritis models. J. Rheumatol.32, 469–476 (2005). CASPubMed Google Scholar
Dong, Q., Ginsberg, H. N. & Erlanger, B. F. Overexpression of the A1 adenosine receptor in adipose tissue protects mice from obesity-related insulin resistance. Diabetes Obes. Metab.3, 360–366 (2001). ArticleCASPubMed Google Scholar
Harada, H. et al. 2-Alkynyl-8-aryl-9-methyladenines as novel adenosine receptor antagonists: their synthesis and structure-activity relationships toward hepatic glucose production induced via agonism of the A2B receptor. J. Med. Chem.44, 170–179 (2001). ArticleCASPubMed Google Scholar
Kohno, Y., Sei, Y., Koshiba, M., Kim, H. O. & Jacobson, K. A. Induction of apoptosis in HL-60 human promyelocytic leukemia cells by adenosine A3 receptor agonists. Biochem. Biophys. Res. Commun.219, 904–910 (1996). ArticleCASPubMedPubMed Central Google Scholar
Kim, S. G. et al. p53-Independent induction of Fas and apoptosis in leukemic cells by an adenosine derivative, Cl-IB-MECA. Biochem. Pharmacol.63, 871–880 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gao, Z., Li, B. S., Day, Y. J. & Linden, J. A3 adenosine receptor activation triggers phosphorylation of protein kinase B and protects rat basophilic leukemia 2H3 mast cells from apoptosis. Mol. Pharmacol.59, 76–82 (2001). ArticleCASPubMed Google Scholar
Neary, J. T., McCarthy, M., Kang, Y. & Zuniga, S. Mitogenic signalling from P1 and P2 purinergic receptors to mitogen-activated protein kinase in human fetal astrocyte cultures. Neurosci. Lett.242, 159–162 (1998). ArticleCASPubMed Google Scholar
Merighi, S. et al. Adenosine receptors as mediators of both cell proliferation and cell death of cultured human melanoma cells. J. Invest. Dermatol.119, 923–933 (2002). ArticleCASPubMed Google Scholar
Fishman, P., Bar-Yehuda, S., Madi, L. & Cohn, I. A3 adenosine receptor as a target for cancer therapy. Anticancer Drugs13, 437–443 (2002). ArticleCASPubMed Google Scholar
Madi, L. et al. The A3 adenosine receptor is highly expressed in tumor versus normal cells: potential target for tumor growth inhibition. Clin. Cancer Res.10, 4472–4479 (2004). Shows that colon and breast carcinoma tissues have higher A3AR expression in the tumour versus adjacent non-neoplastic tissue or normal tissue, which provided a basis for the use of A3AR agonists in cancer therapy. ArticleCASPubMed Google Scholar
Lu, J., Pierron, A. & Ravid, K. An adenosine analogue, IB-MECA, down-regulates estrogen receptor alpha and suppresses human breast cancer cell proliferation. Cancer Res.63, 6413–6423 (2003). CASPubMed Google Scholar
Avila, M. Y., Stone, R. A. & Civan, M. M. Knockout of A3 adenosine receptors reduces mouse intraocular pressure. Invest. Ophthalmol. Vis. Sci.43, 3021–3026 (2002). PubMed Google Scholar
Okamura, T. et al. Structure-activity relationships of adenosine A3 receptor ligands: new potential therapy for the treatment of glaucoma. Bioorg. Med. Chem. Lett.14, 3775–3779 (2004). ArticleCASPubMed Google Scholar
Jacobson, K. A. et al. Neoceptor concept based on molecular complementarity in GPCRs: a mutant adenosine A3 receptor with selectively enhanced affinity for amine-modified nucleosides, J. Med. Chem.44, 4125–4136 (2001). ArticleCASPubMedPubMed Central Google Scholar
Jacobson, K. A. et al. A neoceptor approach to unraveling microscopic interactions between the human A2A adenosine receptor and its agonists. Chem. Biol.12, 237–247 (2005). ArticleCASPubMedPubMed Central Google Scholar
Klotz, K. N. et al. Comparative pharmacology of human adenosine receptor subtypes — characterization of stably transfected receptors in CHO cells. NaunynSchmiedebergs Arch. Pharmacol.357, 1–9 (1998). CAS Google Scholar
Palle, V. P. et al. Structure-affinity relationships of the affinity of 2-pyrazolyl adenosine analogues for the adenosine A2A receptor. Bioorg. Med. Chem. Lett.12, 2935–2939 (2002). ArticleCASPubMed Google Scholar
Gao, Z. G. et al. Orthogonal activation of the reengineered A3 adenosine receptor (neoceptor) using tailored nucleoside agonists. J. Med. Chem (in the press).